How to use the klepto.archives function in klepto

To help you get started, we’ve selected a few klepto examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github JoergFranke / recnet / recnet / model_master.py View on Github external
def dump(self):

        data_location = self.prm.basic["model_location"] + self.prm.basic["model_name"] + ".prm"
        self.pub("Save model: " + data_location)
        d = klepto.archives.file_archive(data_location, cached=True,serialized=True)
        d['layer_weights'] = [[np.asarray(w.eval()) for w in layer] for layer in self.layer_weights]
        d['p_basic'] = self.prm.basic
        d['p_struct'] = self.prm.struct
        d['p_optimize'] = self.prm.optimize
        d.dump()
        d.clear()
github JoergFranke / recnet / recnet / data_handler.py View on Github external
def creat_minibatches(data_location, data_set_name, batch_size, mb_set_name):

    rng = np.random.RandomState(seed=1)

    # Load data set
    file_name = data_location + data_set_name + ".klepto"
    print(file_name)
    d = klepto.archives.file_archive(file_name, cached=True,serialized=True)
    d.load()
    data_set_x = d['x']
    data_set_y = d['y']
    d.clear()

    # data set info
    len_set = data_set_x.__len__()
    print("len_set " + str(len_set))
    len_x = data_set_x[0].shape[1]

    nbatches = int(len_set / batch_size)


    len_y = data_set_y[0].shape[1]

    print(len_x)
github JoergFranke / recnet / examples / little_timer_task / make_data_set.py View on Github external
def make_klepto_file(set_name, input_data, output_data):
    file_name = "data_set/little-timer_" + set_name + ".klepto"
    print("data set name: " + file_name)
    d = klepto.archives.file_archive(file_name, cached=True,serialized=True)
    d['x'] = input_data
    d['y'] = output_data
    d.dump()
    d.clear()
github JoergFranke / recnet / recnet / mini_batch_handler.py View on Github external
y1 = [self.prm.struct["net_size"][-1]-1]
                    for char in data_set_y[s]:
                        y1 += [char, self.prm.optimize['CTC_blank']  ]

                    mb_train_y[k,:y1.__len__()] = y1

                    if self.prm.data["batch_size"] > 1:
                        half_len = mb_train_y.shape[1] / 2
                        mb_train_y[k,half_len:half_len+y1.__len__()] = np.ones(y1.__len__())

            data_mb_x.append(mb_train_x.astype(theano.config.floatX))
            data_mb_y.append(mb_train_y.astype(theano.config.floatX))
            data_mask.append(mb_mask.astype(theano.config.floatX))

        file_name = self.prm.data["mini_batch_location"] + "mb_of_" + self.prm.data[set + "_data_name"]
        d = klepto.archives.file_archive(file_name, cached=True,serialized=True)
        d['x'] = data_mb_x
        d['y'] = data_mb_y
        d['m'] = data_mask
        d.dump()
        d.clear()
github JoergFranke / phoneme_recognition / make_data_set.py View on Github external
if folder_name in train_speaker:
                        train_set_x.append(feat)
                        train_set_y.append(target)
                    elif folder_name in valid_speaker:
                        valid_set_x.append(feat)
                        valid_set_y.append(target)
                    else:
                        assert False, "unknown name"



print("write valid set")
print("valid set length: " + str(valid_set_x.__len__()))
file_name = drainDir + "timit_" + "valid_" + "xy_" + para_name + ".klepto"
print("valid set name: " + file_name)
d = klepto.archives.file_archive(file_name, cached=True,serialized=True)
d['x'] = valid_set_x
d['y'] = valid_set_y
d.dump()
d.clear()

print("write train set")
print("train set length: " + str(train_set_x.__len__()))
file_name = drainDir + "timit_" + "train_" + "xy_" + para_name + ".klepto"
print("train set name: " + file_name)
d = klepto.archives.file_archive(file_name, cached=True,serialized=True)
d['x'] = train_set_x
d['y'] = train_set_y
d.dump()
d.clear()
github JoergFranke / recnet / recnet / mini_batch_handler.py View on Github external
def check_out_data_set(self):

        for set in ['train', 'valid', 'test']:
            if self.prm.data[set + "_data_name"] != None:
                file_name = self.prm.data["data_location"] + self.prm.data[set + "_data_name"]
                try:
                    d = klepto.archives.file_archive(file_name, cached=True,serialized=True)
                    d.load()
                    data_set_x = d['x']
                    data_set_y = d['y']
                    d.clear()
                    self.prm.data[set + "_set_len"] = data_set_x.__len__()
                    if data_set_x.__len__() != data_set_y.__len__():
                        raise Warning("x and y " + set + "_data_name have not the same length")
                    self.prm.data["x_size"] = data_set_x[0].shape[1]
                    if self.prm.data["x_size"] != int(self.prm.struct["net_size"][0]):
                        raise Warning(set + " data x size and net input size are unequal")
                    if self.prm.optimize['CTC'] == False:
                        self.prm.data["y_size"] = data_set_y[0].shape[1]
                        if self.prm.data["y_size"] != int(self.prm.struct["net_size"][-1]):
                            raise Warning(set + " data y size and net input size are unequal")
                    else:
                        self.prm.data["y_size"] = self.prm.struct["net_size"][-1]
github uqfoundation / klepto / klepto / _archives.py View on Github external
def __get_class(self):
       import klepto.archives as archives
       return getattr(archives, self.__archive__.__class__.__name__)
    def __archive(self, archive):
github JoergFranke / recnet / examples / TIMIT Phoneme Recognition / make_data_set.py View on Github external
if folder_name in train_speaker:
                        train_set_x.append(feat)
                        train_set_y.append(target)
                    elif folder_name in valid_speaker:
                        valid_set_x.append(feat)
                        valid_set_y.append(target)
                    else:
                        assert False, "unknown name"



print("write valid set")
print("valid set length: " + str(valid_set_x.__len__()))
file_name = drainDir + "timit_" + "valid_" + "xy_" + para_name + ".klepto"
print("valid set name: " + file_name)
d = klepto.archives.file_archive(file_name, cached=True,serialized=True)
d['x'] = valid_set_x
d['y'] = valid_set_y
d.dump()
d.clear()

print("write train set")
print("train set length: " + str(train_set_x.__len__()))
file_name = drainDir + "timit_" + "train_" + "xy_" + para_name + ".klepto"
print("train set name: " + file_name)
d = klepto.archives.file_archive(file_name, cached=True,serialized=True)
d['x'] = train_set_x
d['y'] = train_set_y
d.dump()
d.clear()
github JoergFranke / recnet / recnet / data_handler.py View on Github external
data_mask = np.asarray(data_mask)

    # Permutate train set
    data_set_length = data_mb_x.__len__()
    order = np.arange(0,data_set_length)
    order = rng.permutation(order)
    data_mb_x = data_mb_x[order]
    data_mb_y = data_mb_y[order]
    data_mask = data_mask[order]

        
    print("write minibatch set")
    print("minibatch set length: " + str(data_mb_x.__len__()))
    file_name = data_location + mb_set_name
    print("minibatch set name: " + file_name)
    d = klepto.archives.file_archive(file_name, cached=True,serialized=True)
    d['x'] = data_mb_x
    d['y'] = data_mb_y
    d['m'] = data_mask
    d.dump()
    d.clear()

    return