Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def EndpointSpec(framework, storage_uri):
if framework == 'tensorflow':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(tensorflow=V1alpha2TensorflowSpec(storage_uri=storage_uri)))
elif framework == 'pytorch':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(pytorch=V1alpha2PyTorchSpec(storage_uri=storage_uri)))
elif framework == 'sklearn':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(sklearn=V1alpha2SKLearnSpec(storage_uri=storage_uri)))
elif framework == 'xgboost':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(xgboost=V1alpha2XGBoostSpec(storage_uri=storage_uri)))
elif framework == 'onnx':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(onnx=V1alpha2ONNXSpec(storage_uri=storage_uri)))
elif framework == 'tensorrt':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(tensorrt=V1alpha2TensorRTSpec(storage_uri=storage_uri)))
else:
raise("Error: No matching framework: " + framework)
def customEndpointSpec(custom_model_spec):
env = [client.V1EnvVar(name=i['name'], value=i['value']) for i in custom_model_spec['env']] if custom_model_spec.get('env', '') else None
ports = [client.V1ContainerPort(container_port=int(custom_model_spec.get('port', '')))] if custom_model_spec.get('port', '') else None
containerSpec = client.V1Container(
name=custom_model_spec.get('name', 'custom-container'),
image=custom_model_spec['image'],
env=env,
ports=ports,
command=custom_model_spec.get('command', None),
args=custom_model_spec.get('args', None),
image_pull_policy=custom_model_spec.get('image_pull_policy', None),
working_dir=custom_model_spec.get('working_dir', None)
)
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(custom=V1alpha2CustomSpec(container=containerSpec)))
def EndpointSpec(framework, storage_uri):
if framework == 'tensorflow':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(tensorflow=V1alpha2TensorflowSpec(storage_uri=storage_uri)))
elif framework == 'pytorch':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(pytorch=V1alpha2PyTorchSpec(storage_uri=storage_uri)))
elif framework == 'sklearn':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(sklearn=V1alpha2SKLearnSpec(storage_uri=storage_uri)))
elif framework == 'xgboost':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(xgboost=V1alpha2XGBoostSpec(storage_uri=storage_uri)))
elif framework == 'onnx':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(onnx=V1alpha2ONNXSpec(storage_uri=storage_uri)))
elif framework == 'tensorrt':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(tensorrt=V1alpha2TensorRTSpec(storage_uri=storage_uri)))
else:
raise("Error: No matching framework: " + framework)
def EndpointSpec(framework, storage_uri):
if framework == 'tensorflow':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(tensorflow=V1alpha2TensorflowSpec(storage_uri=storage_uri)))
elif framework == 'pytorch':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(pytorch=V1alpha2PyTorchSpec(storage_uri=storage_uri)))
elif framework == 'sklearn':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(sklearn=V1alpha2SKLearnSpec(storage_uri=storage_uri)))
elif framework == 'xgboost':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(xgboost=V1alpha2XGBoostSpec(storage_uri=storage_uri)))
elif framework == 'onnx':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(onnx=V1alpha2ONNXSpec(storage_uri=storage_uri)))
elif framework == 'tensorrt':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(tensorrt=V1alpha2TensorRTSpec(storage_uri=storage_uri)))
else:
raise("Error: No matching framework: " + framework)
def EndpointSpec(framework, storage_uri):
if framework == 'tensorflow':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(tensorflow=V1alpha2TensorflowSpec(storage_uri=storage_uri)))
elif framework == 'pytorch':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(pytorch=V1alpha2PyTorchSpec(storage_uri=storage_uri)))
elif framework == 'sklearn':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(sklearn=V1alpha2SKLearnSpec(storage_uri=storage_uri)))
elif framework == 'xgboost':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(xgboost=V1alpha2XGBoostSpec(storage_uri=storage_uri)))
elif framework == 'onnx':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(onnx=V1alpha2ONNXSpec(storage_uri=storage_uri)))
elif framework == 'tensorrt':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(tensorrt=V1alpha2TensorRTSpec(storage_uri=storage_uri)))
else:
raise("Error: No matching framework: " + framework)
def EndpointSpec(framework, storage_uri):
if framework == 'tensorflow':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(tensorflow=V1alpha2TensorflowSpec(storage_uri=storage_uri)))
elif framework == 'pytorch':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(pytorch=V1alpha2PyTorchSpec(storage_uri=storage_uri)))
elif framework == 'sklearn':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(sklearn=V1alpha2SKLearnSpec(storage_uri=storage_uri)))
elif framework == 'xgboost':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(xgboost=V1alpha2XGBoostSpec(storage_uri=storage_uri)))
elif framework == 'onnx':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(onnx=V1alpha2ONNXSpec(storage_uri=storage_uri)))
elif framework == 'tensorrt':
return V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec(tensorrt=V1alpha2TensorRTSpec(storage_uri=storage_uri)))
else:
raise("Error: No matching framework: " + framework)
return { "predictions": preds.argmax(axis=1).tolist() }
except Exception as e:
raise Exception("Failed to predict %s" % e)
DEFAULT_MODEL_NAME = "model"
DEFAULT_LOCAL_MODEL_DIR = "/tmp/model"
parser = argparse.ArgumentParser(parents=[kfserving.kfserver.parser])
parser.add_argument('--model_dir', required=True,
help='A URI pointer to the model binary')
args, _ = parser.parse_known_args()
if __name__ == "__main__":
model = SignsModel("signs",args.model_dir)
# Set number of workers to 1 as model is quite large
kfserving.KFServer(workers=1).start([model])
return { "predictions": preds.argmax(axis=1).tolist() }
except Exception as e:
raise Exception("Failed to predict %s" % e)
DEFAULT_MODEL_NAME = "model"
DEFAULT_LOCAL_MODEL_DIR = "/tmp/model"
parser = argparse.ArgumentParser(parents=[kfserving.kfserver.parser])
parser.add_argument('--model_dir', required=True,
help='A URI pointer to the model binary')
args, _ = parser.parse_known_args()
if __name__ == "__main__":
model = MnistModel("mnist",args.model_dir)
# Set number of workers to 1 as model is quite large
kfserving.KFServer(workers=1).start([model])
def InferenceService(metadata, default_model_spec, canary_model_spec=None, canary_model_traffic=None):
return V1alpha2InferenceService(api_version=constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION,
kind=constants.KFSERVING_KIND,
metadata=metadata,
spec=V1alpha2InferenceServiceSpec(default=default_model_spec,
canary=canary_model_spec,
canary_traffic_percent=canary_model_traffic))
def InferenceService(metadata, default_model_spec, canary_model_spec=None, canary_model_traffic=None):
return V1alpha2InferenceService(api_version=constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION,
kind=constants.KFSERVING_KIND,
metadata=metadata,
spec=V1alpha2InferenceServiceSpec(default=default_model_spec,
canary=canary_model_spec,
canary_traffic_percent=canary_model_traffic))