How to use the jupyter.Timo.own.mfl_sensing_simplelib.stdPGH function in jupyter

To help you get started, we’ve selected a few jupyter examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Ulm-IQO / qudi / jupyter / Timo / own / mfl_sensing_simplelib.py View on Github external
>> higher "a" indicatively leads to slower learning, but smoother learning
        resample_thresh: provides an indicator of how frequently to call resampling.
            >> higher the "thresh" value, more frequently resampling events will occur, indicatively leading to faster but less smooth learning
        TBC: continues the learning from a previous prior instead of wiping it and restarting
        """

        if TBC:
            print("Continuing from...")
            print(self.prior)

        else:
            self.prior = qi.UniformDistribution([self.freq_min, self.freq_max])
            self.updater = qi.SMCUpdater(self.model, self.n_particles, self.prior, resample_a=resample_a,
                                         resample_thresh=resample_thresh)
            if use_heuristic is "PGH":
                self.heuristic = stdPGH(self.updater, inv_field='w_')
            elif use_heuristic is "rootPGH":
                self.heuristic = rootPGH(self.updater, root=1, inv_field='w_')
            else:
                self.heuristic = stepwise_heuristic(self.updater, n_shots=1, ts=data[0])

        if data is None:
            self.sim = True
            if verbose: print("Simulated run with")
            true_params = self.prior.sample()

        elif len(data) is 1:
            self.sim = True
            if verbose: print("Simulated run with")
            true_params = data

        else:
github Ulm-IQO / qudi / jupyter / Timo / own / mfl_sensing_simplelib.py View on Github external
next_tau = tau_0 * self.exp_base**i_tau

        next_tau_s = next_tau

        if self.readout_phase_rad is None:
            try:
                phi_read = m_phase * 2*np.pi / m_tot_phases
            except ZeroDivisionError:
                phi_read = 0
        else:
            phi_read = self.readout_phase_rad

        # not in normal format of heuristics!
        return (next_tau_s, phi_read)

class T2RandPenalty_PGH(stdPGH):
    def __init__(self, updater, tau_thresh_rescale, inv_field='x_', t_field='t',
                 inv_func=qi.expdesign.identity,
                 t_func=qi.expdesign.identity,
                 maxiters=10,
                 other_fields=None, scale_f=2.0):
        """
        Apply a penalty on taus calculated from stdPGH and rescale them to lower values.
        :param tau_thresh_rescale: values above will be rescaled
        :param scale_f: controls the cut off tau. tau_cut = tau_thresh_rescale + scale_f * tau_thresh_rescale
                        = 2 -> tau_max = 3*tau_thresh_rescale
        """

        super().__init__(updater, inv_field, t_field, inv_func, t_func, maxiters, other_fields)
        self.tau_thresh_rescale = tau_thresh_rescale
        self.scale_f = scale_f
github Ulm-IQO / qudi / jupyter / Timo / own / mfl_sensing_simplelib.py View on Github external
def __init__(self, updater, inv_field='x_', t_field='t',
                 inv_func=qi.expdesign.identity,
                 t_func=qi.expdesign.identity,
                 maxiters=10,
                 other_fields=None
                 ):
        super(stdPGH, self).__init__(updater)
        self._x_ = inv_field
        self._t = t_field
        self._inv_func = inv_func
        self._t_func = t_func
        self._maxiters = maxiters
        self._other_fields = other_fields if other_fields is not None else {}