Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
'sat', 'ascat', 'netcdf', 'grid')
static_layers_folder = os.path.join(os.path.dirname(__file__),
'..', 'test-data', 'sat',
'h_saf', 'static_layer')
ascat_reader = AscatSsmCdr(ascat_data_folder, ascat_grid_folder,
grid_filename='TUW_WARP5_grid_info_2_1.nc',
static_layer_path=static_layers_folder)
ascat_reader.read_bulk = True
# Initialize ISMN reader
ismn_data_folder = os.path.join(os.path.dirname(__file__), '..', 'test-data',
'ismn', 'multinetwork', 'header_values')
ismn_reader = ISMN_Interface(ismn_data_folder)
jobs = []
ids = ismn_reader.get_dataset_ids(
variable='soil moisture',
min_depth=0,
max_depth=0.1)
for idx in ids:
metadata = ismn_reader.metadata[idx]
jobs.append((idx, metadata['longitude'], metadata['latitude']))
# Create the variable ***save_path*** which is a string representing the
# path where the results will be saved. **DO NOT CHANGE** the name
# ***save_path*** because it will be searched during the parallel
# processing!
'sat', 'ascat', 'netcdf', 'grid')
static_layers_folder = os.path.join(os.path.dirname(__file__),
'..', 'test-data', 'sat',
'h_saf', 'static_layer')
ascat_reader = AscatSsmCdr(ascat_data_folder, ascat_grid_folder,
grid_filename='TUW_WARP5_grid_info_2_1.nc',
static_layer_path=static_layers_folder)
ascat_reader.read_bulk = True
# Initialize ISMN reader
ismn_data_folder = os.path.join(os.path.dirname(__file__), '..', 'test-data',
'ismn', 'multinetwork', 'header_values')
ismn_reader = ISMN_Interface(ismn_data_folder)
jobs = []
ids = ismn_reader.get_dataset_ids(
variable='soil moisture',
min_depth=0,
max_depth=0.1)
metadata_dict_template = {'network': np.array(['None'], dtype='U256'),
'station': np.array(['None'], dtype='U256'),
'landcover': np.float32([np.nan]),
'climate': np.array(['None'], dtype='U4')}
for idx in ids:
metadata = ismn_reader.metadata[idx]
metadata_dict = [{'network': metadata['network'],
'sat', 'ascat', 'netcdf', 'grid')
static_layers_folder = os.path.join(os.path.dirname(__file__),
'..', 'test-data', 'sat',
'h_saf', 'static_layer')
ascat_reader = AscatSsmCdr(ascat_data_folder, ascat_grid_folder,
grid_filename='TUW_WARP5_grid_info_2_1.nc',
static_layer_path=static_layers_folder)
ascat_reader.read_bulk = True
# Initialize ISMN reader
ismn_data_folder = os.path.join(os.path.dirname(__file__), '..', 'test-data',
'ismn', 'multinetwork', 'header_values')
ismn_reader = ISMN_Interface(ismn_data_folder)
jobs = []
ids = ismn_reader.get_dataset_ids(
variable='soil moisture',
min_depth=0,
max_depth=0.1)
metadata_dict_template = {'network': np.array(['None'], dtype='U256'),
'station': np.array(['None'], dtype='U256'),
'landcover': np.float32([np.nan]),
'climate': np.array(['None'], dtype='U4')}
for idx in ids:
metadata = ismn_reader.metadata[idx]
metadata_dict = [{'network': metadata['network'],
ascat_reader = AscatSsmCdr(ascat_data_folder, ascat_grid_folder,
grid_filename='TUW_WARP5_grid_info_2_1.nc',
static_layer_path=static_layers_folder)
ascat_reader.read_bulk = True
# Initialize ISMN reader
# In[4]:
ismn_data_folder = os.path.join(testdata_folder,
'ismn/multinetwork/header_values')
ismn_reader = ISMN_Interface(ismn_data_folder)
# The validation is run based on jobs. A job consists of at least three lists or numpy arrays specifing the grid
# point index, its latitude and longitude. In the case of the ISMN we can use the `dataset_ids` that identify every
# time series in the downloaded ISMN data as our grid point index. We can then get longitude and latitude from the
# metadata of the dataset.
#
# **DO NOT CHANGE** the name ***jobs*** because it will be searched during the parallel processing!
# In[5]:
jobs = []
ids = ismn_reader.get_dataset_ids(variable='soil moisture', min_depth=0, max_depth=0.1)
for idx in ids: