How to use the imutils.resize function in imutils

To help you get started, we’ve selected a few imutils examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github wodiesan / senior_design_spring / cv_methods_isolated / cv_threaded / thread_cam.py View on Github external
camera.framerate = 20
rawCapture = PiRGBArray(camera, size=(640, 480))
stream = camera.capture_continuous(rawCapture, format="bgr",
                                   use_video_port=True)

# allow the camera to warmup and start the FPS counter
print("[INFO] sampling frames from `picamera` module...")
time.sleep(2.0)
fps = FPS().start()

# loop over some frames
for (i, f) in enumerate(stream):
    # grab the frame from the stream and resize it to have a maximum
    # width of 400 pixels
    frame = f.array
    frame = imutils.resize(frame, width=400)

    # check to see if the frame should be displayed to our screen
    if args["display"] > 0:
        cv2.imshow("Frame", frame)
        key = cv2.waitKey(1) & 0xFF

    # clear the stream in preparation for the next frame and update
    # the FPS counter
    rawCapture.truncate(0)
    fps.update()

    # check to see if the desired number of frames have been reached
    if i == args["num_frames"]:
        break

# stop the timer and display FPS information
github rssr25 / Computer-Vision / 9. Blink Detection / blink_detector.py View on Github external
vs = VideoStream(src = 0).start()
#vs = VideoStream(usePiCamera = True).start()
fileStream = False;
time.sleep(1.0)

#loop over the frames from the video stream
while True:
	#if this is a video file streamer, then we need to check
	#if there are any more frames left in the buffer to process
	if fileStream and not vs.more():
		break

	#grab the frame from the threaded video file stream, resize
	#it, and convert it to grayscale
	frame = vs.read()
	frame = imutils.resize(frame, width = 450)
	gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

	#detect faces in the grayscale frame
	rects = detector(gray, 0)

	#loop over the face detections
	for rect in rects:
		#determine the facial landmarks for the face region, then
		#convert the facial landmark (x, y)- coordinates to a NumPy
		#array
		shape = predictor(gray, rect)
		shape = face_utils.shape_to_np(shape)

		#extract the left and right eye coordinates, then use the
		#coordinates to compute the eye aspect ratio for both eyes
		leftEye = shape[lStart:lEnd]
github JFF-Bohdan / pynvr / nvr_classes / motion_driven_recorder.py View on Github external
continue

                self._camConnectionDts = self.utcNow()

            ret, current_frame = self.cap.read()

            # if can't read current frame - going to the next loop
            if (not ret) or (current_frame is None):  # the connection broke, or the stream came to an end
                self.logger.warning("bad frame")
                bad_frames += 1
                continue
            else:
                bad_frames = 0

            if self.scaleFrameTo is not None:
                current_frame = imutils.resize(current_frame, width=self.scaleFrameTo[0], height=self.scaleFrameTo[1])

            # get timestamp of the frame
            instant = time.time()

            frameHeight = np.size(current_frame, 0)
            frameWidth = np.size(current_frame, 1)

            if self.camFps is None:
                self.camFps = self.cap.get(cv.CAP_PROP_FPS)
                self.logger.info("FPS = {}".format(self.camFps))

            # adding frame to pre-recording buffer
            if self.preAlarmRecordingSecondsQty > 0:
                self._addPreAlarmFrame(current_frame)

            if emptyFrame is None:
github olinrobotics / irl / edwin_legacy / Fall_2017 / button_game / Tests / ball_tracking.py View on Github external
redUpper = (179, 255, 255)

pts = deque(maxlen=args["buffer"])


# grab the reference to the webcam
camera = cv2.VideoCapture(0)

#keep looping
while True:
    #grab the current frame
    (grabbed, frame) = camera.read()

    # resize the frame, blur it, and return
    # it in the HSV color space
    frame = imutils.resize(frame, width=600)
    blurred = cv2.GaussianBlur(frame, (11, 11), 0)
    hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

    # create a mask for the color green and then
    # perform erodions and dialations to make the
    # tracking more smooth

    mask_blue = cv2.inRange(hsv, blueLower, blueUpper)
    mask_green = cv2.inRange(hsv, greenLower, greenUpper)
    mask_yellow = cv2.inRange(hsv, yellowLower, yellowUpper)
    mask_red = cv2.inRange(hsv, redLower, redUpper)

    mask_total = mask_blue + mask_green + mask_yellow + mask_red

    mask_total = cv2.erode(mask_total, None, iterations=2)
    mask_total = cv2.dilate(mask_total, None, iterations=2)
github dev-labs-bg / football-stats / motion_detector.py View on Github external
firstFrame = None

# loop over the frames of the video
while True:
	# grab the current frame and initialize the occupied/unoccupied
	# text
	(grabbed, frame) = camera.read()
	text = "Unoccupied"

	# if the frame could not be grabbed, then we have reached the end
	# of the video
	if not grabbed:
		break

	# resize the frame, convert it to grayscale, and blur it
	frame = imutils.resize(frame, width=600)
	gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
	gray = cv2.GaussianBlur(gray, (21, 21), 0)

	# if the first frame is None, initialize it
	if firstFrame is None:
		firstFrame = gray
		continue

	# compute the absolute difference between the current frame and
	# first frame
	frameDelta = cv2.absdiff(firstFrame, gray)
	thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]

	# dilate the thresholded image to fill in holes, then find contours
	# on thresholded image
	thresh = cv2.dilate(thresh, None, iterations=2)
github Sardhendu / License-Plate-Detection / Licenceplate_identification / Logistic_regression / c_pre_processing.py View on Github external
image_gray=cv2.cvtColor(image_resized, cv2.COLOR_BGR2GRAY)

    # Do thresholding
    image_thresh=image_gray
    T=mahotas.thresholding.otsu(image_gray) # will find an optimal value of T from the image
    image_thresh[image_thresh>T]=255 # This goes pixel by pixel if the pixel value of the thresh is greater than the optimal value then the color is white
    image_thresh[image_thresh
github apollos / opencv-practice / searching / search.py View on Github external
print("[INFO] search took: {:.2f}s".format(sr.search_time))

# initialize the results montage
montage = ResultsMontage((240, 320), 5, 20)

# loop over the individual results
for (i, (score, resultID, resultIdx)) in enumerate(sr.results):
	# load the result image and display it
	print("[RESULT] {result_num}. {result} - {score:.2f}".format(result_num=i + 1,
		result=resultID, score=score))
	result = cv2.imread("{}/{}".format(args["dataset"], resultID))
	montage.addResult(result, text="#{}".format(i + 1),
		highlight=resultID in queryRelevant)

# show the output image of results
cv2.imshow("Results", imutils.resize(montage.montage, height=700))
cv2.waitKey(0)
searcher.finish()
github Grennith / Map-A-Droid / checkWeather.py View on Github external
log.error('weather_image_matching: %s appears to be corrupted' % str(url_img_name))
        return 0

    screenshot_img = cv2.imread(screenshot_name,3)

    if (screenshot_img is None):
        log.error('weather_image_matching: %s appears to be corrupted' % str(screenshot_name))
        return 0
    height, width,_ = weather_icon.shape
    
    fort_img = imutils.resize(screenshot_img, width = int(screenshot_img.shape[1] * 2))
    height_f, width_f,_ = screenshot_img.shape
    screenshot_img = screenshot_img[0:height_f/7,0:width_f]


    resized = imutils.resize(weather_icon, width = int(weather_icon.shape[1] * 1))
    
    crop = cv2.Canny(resized, 100, 200)
        
    if crop.mean() == 255 or crop.mean() == 0:
        return 0

    (tH, tW) = crop.shape[:2]
    
    screenshot_img = cv2.blur(screenshot_img,(3,3))
    screenshot_img = cv2.Canny(screenshot_img, 50, 100)
  

    found = None
    for scale in np.linspace(0.2,1, 5)[::-1]:
        resized = imutils.resize(screenshot_img, width = int(screenshot_img.shape[1] * scale))
        r = screenshot_img.shape[1] / float(resized.shape[1])
github goktug97 / TargetPersonTracker / hog / hog.py View on Github external
def detect(self, frame):
        # Resizing for speed and better accuracy
        self.original_shape = frame.shape
        frame = imutils.resize(frame,
                               width=min(400, frame.shape[1]))
        self.resized_shape = frame.shape

        # Detection
        rects, _ = self.hog.detectMultiScale(
            frame, winStride=(4, 4),
            padding=(8, 8), scale=1.05)

        # Convert dets to xmin,ymin,xmax,ymax format
        rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects])

        # Non-Max Supression (xmin, ymin, xmax, ymax)
        self.detects = utils.nms(rects=rects, overlapThresh=0.65)

        self.scale_detections()
github apollos / opencv-practice / evaluate_spatial_verification / search.py View on Github external
print("[INFO] search took: {:.2f}s".format(sr.search_time))

# initialize the results montage
montage = ResultsMontage((240, 320), 5, 20)

# loop over the individual results
for (i, (score, resultID, resultIdx)) in enumerate(sr.results):
	# load the result image and display it
	print("[RESULT] {result_num}. {result} - {score:.2f}".format(result_num=i + 1,
		result=resultID, score=score))
	result = cv2.imread("{}/{}".format(args["dataset"], resultID))
	montage.addResult(result, text="#{}".format(i + 1),
		highlight=resultID in queryRelevant)

# show the output image of results
cv2.imshow("Results", imutils.resize(montage.montage, height=700))
cv2.waitKey(0)
searcher.finish()

imutils

A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, displaying Matplotlib images, sorting contours, detecting edges, and much more easier with OpenCV and both Python 2.7 and Python 3.

MIT
Latest version published 4 years ago

Package Health Score

64 / 100
Full package analysis