Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def is_ascii(s):
try:
s.decode('ascii')
except UnicodeDecodeError:
return False
return True
ascii_text = strategies.characters(max_codepoint=127)
ascii_binary = strategies.builds(lambda s: s.encode('ascii'), ascii_text)
immutables = strategies.recursive(
ascii_binary |
strategies.booleans() |
strategies.floats(allow_nan=False) |
strategies.integers() |
strategies.none() |
strategies.text() |
strategies.tuples(),
lambda children: (
strategies.frozensets(children) |
strategies.tuples(children)
),
)
mutables = strategies.recursive(
strategies.dictionaries(immutables, immutables) |
strategies.lists(immutables) |
strategies.sets(immutables),
lambda children: (
strategies.dictionaries(immutables, children) |
strategies.lists(children)
dH=st.integers(1, 2), dW=st.integers(1, 2))
def test_conv_api(self, X, padH, padW, sH, sW, dH, dW):
"""Tests the correctness of the conv functional.
The correctness is defined by the behavior being similar to the
`quantized._ops` implementation.
"""
# Random inputs
# X, (scale, zero_point, torch_type) = X
(inputs, filters, bias, groups) = X
inputs, (inputs_scale, inputs_zero_point, inputs_qtype) = inputs
filters, (filters_scale, filters_zero_point, filters_qtype) = filters
bias, (bias_scale, bias_zero_point, bias_qtype) = bias
scale, zero_point = inputs_scale, inputs_zero_point
torch_type = inputs_qtype
def test_can_find_list():
x = find(lists(integers()), lambda x: sum(x) >= 10)
assert sum(x) == 10
amount_in_wei=st.integers(min_value=MIN_WEI, max_value=MAX_WEI),
intermediate_unit=st.sampled_from(tuple(units.keys())),
)
def test_conversion_round_trip(amount_in_wei, intermediate_unit):
intermediate_amount = from_wei(amount_in_wei, intermediate_unit)
result_amount = to_wei(intermediate_amount, intermediate_unit)
assert result_amount == amount_in_wei
def __init__(self, elements, size):
SearchStrategy.__init__(self)
self.__length = st.integers(0, ceil(size ** 0.5))
self.__elements = elements
def fixed_values(draw):
matching_values = draw(st.lists(elements=st.integers(min_value=0), min_size=4, max_size=4))
non_matching_1 = draw(st.integers(min_value=0).filter(lambda x: x not in matching_values))
non_matching_2 = draw(st.integers(min_value=0).filter(lambda x: x not in matching_values))
non_matching_3 = draw(st.integers(min_value=0).filter(lambda x: x not in matching_values))
non_matching_4 = draw(st.integers(min_value=0).filter(lambda x: x not in matching_values))
return {
"matching": matching_values,
"non_matching": [
non_matching_1,
non_matching_2,
non_matching_3,
non_matching_4
]
def port_numbers(min_value=1, max_value=65535):
"""
Builds integers in the range of TCP/UDP port numbers.
"""
return integers(min_value, max_value)
def df_strategy():
"""
A convenience function for generating a dataframe as a hypothesis strategy.
Should be treated like a fixture, but should not be passed as a fixture
into a test function. Instead::
@given(df=dataframe())
def test_function(df):
# test goes here
"""
return data_frames(
columns=[
column("a", elements=st.integers()),
column("Bell__Chart", elements=st.floats()),
column("decorated-elephant", elements=st.integers()),
column("animals@#$%^", elements=st.text()),
column("cities", st.text()),
],
index=range_indexes(min_size=1, max_size=20),
)
@given(integers())
def foo(a, (b, c)):
pass
with pytest.raises(InvalidArgument):
def timeZones(draw: Callable) -> TimeZone:
offset = draw(integers(min_value=-(60 * 24) + 1, max_value=(60 * 24) - 1))
timeDelta = TimeDelta(minutes=offset)
timeZone = TimeZone(offset=timeDelta, name="{}s".format(offset))
return timeZone