Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
print 'ini: mono=%s, dipole=%s'%(c,d)
mono,dipole = H.pixelfunc.fit_dipole(sig)
print 'fit: mono=%s, dipole=%s'%(mono,dipole)
resfit = dot(vec.T,dipole)+mono
diff = sig.copy()
diff[sig != H.UNSEEN] -= resfit[sig != H.UNSEEN]
H.mollview(diff)
# use remove_dipole
m2 = H.pixelfunc.remove_dipole(sig)
m3 = H.pixelfunc.remove_monopole(sig)
H.mollview(m2)
H.mollview(m3)
ra_rad, dec_rad = self.radec_of(0, np.pi / 2)
ra_deg = ra_rad / np.pi * 180
dec_deg = dec_rad / np.pi * 180
# Apply rotation
derotate = hp.Rotator(rot=[ra_deg, dec_deg])
g0, g1 = derotate(self._theta, self._phi)
pix0 = hp.ang2pix(self._n_side, g0, g1)
sky = sky[pix0]
coordrotate = hp.Rotator(coord=['C', 'G'], inv=True)
g0, g1 = coordrotate(self._theta, self._phi)
pix0 = hp.ang2pix(self._n_side, g0, g1)
sky = sky[pix0]
hp.mollview(sky, coord='G', **kwargs)
if show:
if not plt:
import pylab as plt
plt.show()
return sky
usage = "Usage: %prog [options] mangle1.ply [mangle2.ply ...]"
description = "python script"
parser = OptionParser(usage=usage,description=description)
(opts, args) = parser.parse_args()
nside = 2**8
print("Creating ra, dec...")
pix = np.arange(healpy.nside2npix(nside))
ra,dec = pixToAng(nside,pix)
for infile in args:
print("Testing %i HEALPix pixels ..."%len(pix))
inside = inMangle(infile,ra,dec)
print("Plotting...")
healpy.mollview(inside)
outfile = infile.replace('.ply','.png')
print("Writing %s"%outfile)
plt.savefig(outfile)
starmap=hp.read_map("star_template.fits",verbose=False)
starmap[starmap<=0]=1E-15
starmap_low=hp.smoothing(hp.ud_grade(hp.ud_grade(starmap,nside_out=64),nside_out=o.nside_out),fwhm=3.5*np.pi/180,verbose=False) #Smooth out the star map to 3.5deg FWHM
r_starmap=starmap_low/np.amax(starmap_low[msk>0]) #Normalize by maximum value
shotnoise_factor=(r_starmap-4)/(2*r_starmap-4) #Compute shot noise factor. This interpolates between 1 (no stars) and 1.5 (lots of stars)
#Now, impose additional depth variations on scales of 3.5 degrees
cl_extravar=np.exp(-larr*(larr+1)*(3.5*np.pi/180/2.355)**2)
norm=0.67E-3/np.sum(cl_extravar*(2*larr+1)/4/np.pi); cl_extravar*=norm; #This yields <10% variations
depth_factor=1+hp.synfast(cl_extravar,o.nside_out,new=True,verbose=False);
#This total map corresponds to the relative variation in the shot-noise variance
snvmap=shotnoise_factor*depth_factor*msk
if o.plot_stuff :
hp.mollview(snvmap,min=0.9,title='Relative local shot noise variance');
plt.show()
hp.write_map("cont_lss_nvar_ns%d.fits"%o.nside_out,snvmap,overwrite=True)
if not os.path.isfile("cont_lss_star_ns%d.fits"%o.nside_out) :
starmap=hp.ud_grade(hp.read_map("star_template.fits",verbose=False),nside_out=o.nside_out)
starmap[starmap<=0]=1E-15
starmap=-np.log(starmap) #Contaminant will be proportional to log(n_star)
mean=np.sum(starmap*msk)/np.sum(msk)
clcont=hp.anafast((starmap-mean)*msk)/fsky
nflat=np.mean(clcont[max(2,o.nside_out//3-50):o.nside_out//3+50])*np.ones_like(clcont); #Add extra fluctuations beyond ell~nside/3 with flat power spectrum
dstar=hp.synfast(nflat,o.nside_out,new=True,verbose=False)
starmap_b=np.maximum(starmap+dstar,0)
clcont_b=hp.anafast((starmap_b-mean)*msk)/fsky
ratio=-np.sqrt(0.03*np.sum(cltt[max(2,o.nside_out//3-50):o.nside_out//3+50])/np.sum(clcont_b[max(2,o.nside_out//3-50):o.nside_out//3+50])) #3% contamination at ell~nside/3
import healpy as hp
import numpy as np
import matplotlib.pyplot as plt
SIZE = 400
DPI = 60
m = np.arange(hp.nside2npix(32))
hp.mollview(m, nest=True, xsize=SIZE, title="Mollview image NESTED")
plt.savefig("static/moll_nside32_nest.png", dpi=DPI)
hp.mollview(m, nest=False, xsize=SIZE, title="Mollview image RING")
plt.savefig("static/moll_nside32_ring.png", dpi=DPI)
wmap_map_I = hp.read_map("../healpy/test/data/wmap_band_imap_r9_7yr_W_v4.fits")
hp.mollview(
wmap_map_I,
coord=["G", "E"],
title="Histogram equalized Ecliptic",
unit="mK",
norm="hist",
min=-1,
max=1,
xsize=SIZE,
"""
if self.generated_map_data is None:
raise RuntimeError("No GSM map has been generated yet. Run generate() first.")
if self.generated_map_data.ndim == 2:
gmap = self.generated_map_data[idx]
freq = self.generated_map_freqs[idx]
else:
gmap = self.generated_map_data
freq = self.generated_map_freqs
if logged:
gmap = np.log2(gmap)
hp.mollview(gmap, coord='G',
title='Global Sky Model %s %s' % (str(freq), self.unit))
if not plt:
import pylab as plt
plt.show()
from matplotlib import pyplot as plt
# warning: due to a bug in healpy, importing it before pylab can cause
# a segmentation fault in some circumstances.
import healpy as hp
from astroML.datasets import fetch_wmap_temperatures
#------------------------------------------------------------
# Fetch the wmap data
wmap_unmasked = fetch_wmap_temperatures(masked=False)
#------------------------------------------------------------
# plot the unmasked map
fig = plt.figure(1)
hp.mollview(wmap_unmasked, min=-1, max=1, title='Raw WMAP data',
fig=1, cmap=plt.cm.jet, unit=r'$\Delta$T (mK)')
plt.show()
def mollview(hpmap, mark_unseen=True, radiosrc=True, cmap=None, **kwargs):
if cmap is None:
cmap = cubehelix_palette()
if mark_unseen:
hpmap = hpmap.copy()
hpmap[hpmap==0] = hp.UNSEEN
figsize = kwargs.pop("figsize", (15,10))
fig, ax = plt.subplots(figsize=figsize)
title = kwargs.pop("title", "")
hp.mollview(hpmap, coord="C",
hold=True,
cmap=cmap,
title=title,
**kwargs)
hp.graticule(coord="g", verbose=False)
if radiosrc:
ax=hp.projaxes.HpxMollweideAxes(fig, (0.02,0.05,0.96,0.9),coord="g")
fig.add_axes(ax)
def add_radiosrc(ra, dec):
hpmollaxes = fig.axes[-1]
phi = sphere.ra2phi(ra * 2 * np.pi / 25)
theta = sphere.dec2theta(np.radians(dec))
scatter_kwargs = dict(marker="o", facecolors='none', edgecolors='r', linewidth=2.)
ax2.set_xlim([rb/2,2*nside_lss])
ax3.set_xlim([rb/2,2*nside_lss])
plt.savefig("../plots_paper/cls_cont_lss.pdf",bbox_inches='tight')
plt.show()
if (o.whichfig==5) or (o.whichfig==-1) :
#Plotting CMB stuff
msk_s=hp.read_map("mask_cmb_ns%d.fits"%nside_cmb,verbose=False)
fmi,msk_f=fm.read_flat_map("mask_cmb_flat.fits")
fdum,[cq_f,cu_f]=fm.read_flat_map("cont_cmb_flat.fits",i_map=-1)
cq_s,cu_s=hp.read_map("cont_cmb_ns%d.fits"%nside_cmb,field=[0,1],verbose=False)
tonull_s=np.where(msk_s==0)
tonull_f=np.where(msk_f==0)
plt.figure(figsize=(12,9.75))
ax=plt.subplot(321); mpp=msk_s.copy();
hp.mollview(mpp,hold=True,notext=True,coord=['G','C'],title='Mask',cbar=False)
ax=plt.subplot(322,projection=fmi.wcs); mpp=msk_f.copy();
fmi.view_map(mpp,ax=ax,addColorbar=False,title="Mask",xlabel="")
ax=plt.subplot(323); mpp=msk_s*cq_s;
hp.mollview(mpp,hold=True,notext=True,coord=['G','C'],title='$Q_{\\rm FG}$',cbar=False)
ax=plt.subplot(324,projection=fmi.wcs); mpp=msk_f*cq_f;
fmi.view_map(mpp,ax=ax,addColorbar=False,title="$Q_{\\rm FG}$",xlabel="")
ax=plt.subplot(325); mpp=msk_s*cu_s;
hp.mollview(mpp,hold=True,notext=True,coord=['G','C'],title='$U_{\\rm FG}$',cbar=False)
ax=plt.subplot(326,projection=fmi.wcs); mpp=msk_f*cu_f;
fmi.view_map(mpp,ax=ax,addColorbar=False,title="$U_{\\rm FG}$")
plt.savefig("../plots_paper/maps_cmb.pdf",bbox_inches='tight')
plt.show()
if (o.whichfig==6) or (o.whichfig==-1) :
lmax=7000
def read_cl_camb(fname) :