How to use the gluonts.transform.AddTimeFeatures function in gluonts

To help you get started, we’ve selected a few gluonts examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github awslabs / gluon-ts / test / test_transform.py View on Github external
second_dim[0] = "NaN"

    ds = gluonts.dataset.common.ListDataset(
        data_iter=[{"start": "2012-01-01", "target": [first_dim, second_dim]}],
        freq="1D",
        one_dim_target=False,
    )
    pred_length = 2

    # Looks weird - but this is necessary to assert the nan entries correctly.
    first_dim[-1] = np.nan
    second_dim[0] = np.nan

    t = transform.Chain(
        trans=[
            transform.AddTimeFeatures(
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field="time_feat",
                time_features=[
                    time_feature.DayOfWeek(),
                    time_feature.DayOfMonth(),
                    time_feature.MonthOfYear(),
                ],
                pred_length=pred_length,
            ),
            transform.AddAgeFeature(
                target_field=FieldName.TARGET,
                output_field="age",
                pred_length=pred_length,
                log_scale=True,
            ),
github awslabs / gluon-ts / test / test_transform.py View on Github external
def test_AddTimeFeatures_empty_time_features(start, target, is_train: bool):
    pred_length = 13
    t = transform.AddTimeFeatures(
        start_field=FieldName.START,
        target_field=FieldName.TARGET,
        output_field="myout",
        pred_length=pred_length,
        time_features=[],
    )

    assert_serializable(t)

    data = {"start": start, "target": target}
    res = t.map_transform(data, is_train=is_train)
    assert res["myout"] is None
github awslabs / gluon-ts / test / test_transform.py View on Github external
def test_Transformation():
    train_length = 100
    ds = gluonts.dataset.common.ListDataset(
        [{"start": "2012-01-01", "target": [0.2] * train_length}], freq="1D"
    )

    pred_length = 10

    t = transform.Chain(
        trans=[
            transform.AddTimeFeatures(
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field="time_feat",
                time_features=[
                    time_feature.DayOfWeek(),
                    time_feature.DayOfMonth(),
                    time_feature.MonthOfYear(),
                ],
                pred_length=pred_length,
            ),
            transform.AddAgeFeature(
                target_field=FieldName.TARGET,
                output_field="age",
                pred_length=pred_length,
                log_scale=True,
            ),
github awslabs / gluon-ts / src / gluonts / model / deepar / _estimator.py View on Github external
field=FieldName.FEAT_STATIC_REAL,
                    expected_ndim=1,
                    dtype=self.dtype,
                ),
                AsNumpyArray(
                    field=FieldName.TARGET,
                    # in the following line, we add 1 for the time dimension
                    expected_ndim=1 + len(self.distr_output.event_shape),
                    dtype=self.dtype,
                ),
                AddObservedValuesIndicator(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.OBSERVED_VALUES,
                    dtype=self.dtype,
                ),
                AddTimeFeatures(
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_TIME,
                    time_features=self.time_features,
                    pred_length=self.prediction_length,
                ),
                AddAgeFeature(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_AGE,
                    pred_length=self.prediction_length,
                    log_scale=True,
                    dtype=self.dtype,
                ),
                VstackFeatures(
                    output_field=FieldName.FEAT_TIME,
                    input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE]
github awslabs / gluon-ts / src / gluonts / model / seq2seq / _seq2seq_estimator.py View on Github external
def create_transformation(self) -> transform.Transformation:
        return transform.Chain(
            trans=[
                transform.AsNumpyArray(
                    field=FieldName.TARGET, expected_ndim=1
                ),
                transform.AddTimeFeatures(
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_TIME,
                    time_features=time_features_from_frequency_str(self.freq),
                    pred_length=self.prediction_length,
                ),
                transform.VstackFeatures(
                    output_field=FieldName.FEAT_DYNAMIC_REAL,
                    input_fields=[FieldName.FEAT_TIME],
                ),
                transform.SetFieldIfNotPresent(
                    field=FieldName.FEAT_STATIC_CAT, value=[0.0]
                ),
                transform.AsNumpyArray(
                    field=FieldName.FEAT_STATIC_CAT, expected_ndim=1
                ),
github awslabs / gluon-ts / src / gluonts / model / transformer / _estimator.py View on Github external
[SetField(output_field=FieldName.FEAT_STATIC_CAT, value=[0.0])]
                if not self.use_feat_static_cat
                else []
            )
            + [
                AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1),
                AsNumpyArray(
                    field=FieldName.TARGET,
                    # in the following line, we add 1 for the time dimension
                    expected_ndim=1 + len(self.distr_output.event_shape),
                ),
                AddObservedValuesIndicator(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.OBSERVED_VALUES,
                ),
                AddTimeFeatures(
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_TIME,
                    time_features=self.time_features,
                    pred_length=self.prediction_length,
                ),
                AddAgeFeature(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_AGE,
                    pred_length=self.prediction_length,
                    log_scale=True,
                ),
                VstackFeatures(
                    output_field=FieldName.FEAT_TIME,
                    input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE]
                    + (
github awslabs / gluon-ts / src / gluonts / model / wavenet / _estimator.py View on Github external
def create_transformation(
        self, bin_edges: np.ndarray, pred_length: int
    ) -> transform.Transformation:
        return Chain(
            [
                AsNumpyArray(field=FieldName.TARGET, expected_ndim=1),
                AddObservedValuesIndicator(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.OBSERVED_VALUES,
                ),
                AddTimeFeatures(
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_TIME,
                    time_features=time_features_from_frequency_str(self.freq),
                    pred_length=self.prediction_length,
                ),
                AddAgeFeature(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_AGE,
                    pred_length=self.prediction_length,
                ),
                VstackFeatures(
                    output_field=FieldName.FEAT_TIME,
                    input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE],
                ),
                SetFieldIfNotPresent(
github awslabs / gluon-ts / src / gluonts / model / canonical / _estimator.py View on Github external
def create_transformation(self) -> Transformation:
        return Chain(
            trans=[
                AsNumpyArray(field=FieldName.TARGET, expected_ndim=1),
                AddTimeFeatures(
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_TIME,
                    time_features=time_features_from_frequency_str(self.freq),
                    pred_length=self.prediction_length,
                ),
                SetFieldIfNotPresent(
                    field=FieldName.FEAT_STATIC_CAT, value=[0.0]
                ),
                AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1),
                InstanceSplitter(
                    target_field=FieldName.TARGET,
                    is_pad_field=FieldName.IS_PAD,
                    start_field=FieldName.START,
                    forecast_start_field=FieldName.FORECAST_START,
                    train_sampler=TestSplitSampler(),
github awslabs / gluon-ts / src / gluonts / model / deepstate / _estimator.py View on Github external
+ (
                [SetField(output_field=FieldName.FEAT_STATIC_CAT, value=[0.0])]
                if not self.use_feat_static_cat
                else []
            )
            + [
                AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1),
                AsNumpyArray(field=FieldName.TARGET, expected_ndim=1),
                # gives target the (1, T) layout
                ExpandDimArray(field=FieldName.TARGET, axis=0),
                AddObservedValuesIndicator(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.OBSERVED_VALUES,
                ),
                # Unnormalized seasonal features
                AddTimeFeatures(
                    time_features=CompositeISSM.seasonal_features(self.freq),
                    pred_length=self.prediction_length,
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=SEASON_INDICATORS_FIELD,
                ),
                AddTimeFeatures(
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_TIME,
                    time_features=self.time_features,
                    pred_length=self.prediction_length,
                ),
                AddAgeFeature(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_AGE,