Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
t_dry_film = rhol*Hvap/q*(delta0 - C_delta0)
if t_dry_film > tv:
t_film = tv
delta_end = delta0 - q/rhol/Hvap*tv # what could time possibly be?
t_dry = 0
else:
t_film = t_dry_film
delta_end = C_delta0
t_dry = tv-t_film
Ll = tau*G/rhol*(1-x)
Ldry = t_dry*vp
Prg = Prandtl(Cp=Cpg, k=kg, mu=mug)
Prl = Prandtl(Cp=Cpl, k=kl, mu=mul)
fg = (1.82*log10(Reg) - 1.64)**-2
fl = (1.82*log10(Rel) - 1.64)**-2
Nu_lam_Zl = 2*0.455*(Prl)**(1/3.)*(D*Rel/Ll)**0.5
Nu_trans_Zl = turbulent_Gnielinski(Re=Rel, Pr=Prl, fd=fl)*(1 + (D/Ll)**(2/3.))
if Ldry == 0:
Nu_lam_Zg, Nu_trans_Zg = 0, 0
else:
Nu_lam_Zg = 2*0.455*(Prg)**(1/3.)*(D*Reg/Ldry)**0.5
Nu_trans_Zg = turbulent_Gnielinski(Re=Reg, Pr=Prg, fd=fg)*(1 + (D/Ldry)**(2/3.))
h_Zg = kg/D*(Nu_lam_Zg**4 + Nu_trans_Zg**4)**0.25
h_Zl = kl/D*(Nu_lam_Zl**4 + Nu_trans_Zl**4)**0.25
h_film = 2*kl/(delta0 + C_delta0)
return tl/tau*h_Zl + t_film/tau*h_film + t_dry/tau*h_Zg
tv = tau/(1 ++ rhog/rhol*((1.-x)/x))
t_dry_film = rhol*Hvap/q*(delta0 - C_delta0)
if t_dry_film > tv:
t_film = tv
delta_end = delta0 - q/rhol/Hvap*tv # what could time possibly be?
t_dry = 0
else:
t_film = t_dry_film
delta_end = C_delta0
t_dry = tv-t_film
Ll = tau*G/rhol*(1-x)
Ldry = t_dry*vp
Prg = Prandtl(Cp=Cpg, k=kg, mu=mug)
Prl = Prandtl(Cp=Cpl, k=kl, mu=mul)
fg = (1.82*log10(Reg) - 1.64)**-2
fl = (1.82*log10(Rel) - 1.64)**-2
Nu_lam_Zl = 2*0.455*(Prl)**(1/3.)*(D*Rel/Ll)**0.5
Nu_trans_Zl = turbulent_Gnielinski(Re=Rel, Pr=Prl, fd=fl)*(1 + (D/Ll)**(2/3.))
if Ldry == 0:
Nu_lam_Zg, Nu_trans_Zg = 0, 0
else:
Nu_lam_Zg = 2*0.455*(Prg)**(1/3.)*(D*Reg/Ldry)**0.5
Nu_trans_Zg = turbulent_Gnielinski(Re=Reg, Pr=Prg, fd=fg)*(1 + (D/Ldry)**(2/3.))
h_Zg = kg/D*(Nu_lam_Zg**4 + Nu_trans_Zg**4)**0.25
h_Zl = kl/D*(Nu_lam_Zl**4 + Nu_trans_Zl**4)**0.25
h_film = 2*kl/(delta0 + C_delta0)
----------
.. [1] Bennett, Douglas L., and John C. Chen. "Forced Convective Boiling in
Vertical Tubes for Saturated Pure Components and Binary Mixtures."
AIChE Journal 26, no. 3 (May 1, 1980): 454-61. doi:10.1002/aic.690260317.
.. [2] Bennett, Douglas L., M.W. Davies and B.L. Hertzler, The Suppression
of Saturated Nucleate Boiling by Forced Convective Flow, American
Institute of Chemical Engineers Symposium Series, vol. 76, no. 199.
91-103, 1980.
.. [3] Bertsch, Stefan S., Eckhard A. Groll, and Suresh V. Garimella.
"Review and Comparative Analysis of Studies on Saturated Flow Boiling in
Small Channels." Nanoscale and Microscale Thermophysical Engineering 12,
no. 3 (September 4, 2008): 187-227. doi:10.1080/15567260802317357.
'''
G = m/(pi/4*D**2)
Rel = D*G*(1-x)/mul
Prl = Prandtl(Cp=Cpl, mu=mul, k=kl)
hl = turbulent_Dittus_Boelter(Re=Rel, Pr=Prl)*kl/D
Xtt = Lockhart_Martinelli_Xtt(x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug)
F = ((Prl+1)/2.)**0.444*(1 + Xtt**-0.5)**1.78
X0 = 0.041*(sigma/(g*(rhol-rhog)))**0.5
S = (1 - exp(-F*hl*X0/kl))/(F*hl*X0/kl)
hnb = Forster_Zuber(Te=Te, dPsat=dPsat, Cpl=Cpl, kl=kl, mul=mul, sigma=sigma,
Hvap=Hvap, rhol=rhol, rhog=rhog)
return hnb*S + hl*F
2012): 325-35. doi:10.1016/j.ijrefrig.2011.11.002.
.. [2] Huang, Jianchang. "Performance Analysis of Plate Heat Exchangers
Used as Refrigerant Evaporators," 2011. Thesis.
http://wiredspace.wits.ac.za/handle/10539/9779
.. [3] Amalfi, Raffaele L., Farzad Vakili-Farahani, and John R. Thome.
"Flow Boiling and Frictional Pressure Gradients in Plate Heat Exchangers.
Part 1: Review and Experimental Database." International Journal of
Refrigeration 61 (January 2016): 166-84.
doi:10.1016/j.ijrefrig.2015.07.010.
.. [4] Eldeeb, Radia, Vikrant Aute, and Reinhard Radermacher. "A Survey of
Correlations for Heat Transfer and Pressure Drop for Evaporation and
Condensation in Plate Heat Exchangers." International Journal of
Refrigeration 65 (May 2016): 12-26. doi:10.1016/j.ijrefrig.2015.11.013.
'''
do = 0.0146*angle*(2.*sigma/(g*(rhol - rhog)))**0.5
Prl = Prandtl(Cp=Cpl, mu=mul, k=kl)
alpha_l = thermal_diffusivity(k=kl, rho=rhol, Cp=Cpl)
h = 1.87E-3*(kl/do)*(q*do/(kl*Tsat))**0.56*(Hvap*do**2/alpha_l**2)**0.31*Prl**0.33
return h
----------
.. [1] Hewitt, G. L. Shires, T. Reg Bott G. F., George L. Shires, and T.
R. Bott. Process Heat Transfer. 1st edition. Boca Raton: CRC Press,
1994.
.. [2] "High-Fin Staggered Tube Banks: Heat Transfer and Pressure Drop for
Turbulent Single Phase Gas Flow." ESDU 86022 (October 1, 1986).
.. [3] Rabas, T. J., and J. Taborek. "Survey of Turbulent Forced-Convection
Heat Transfer and Pressure Drop Characteristics of Low-Finned Tube Banks
in Cross Flow." Heat Transfer Engineering 8, no. 2 (January 1987):
49-62.
'''
fin_height = 0.5*(fin_diameter - tube_diameter)
V_max = m/(A_min*rho)
Re = Reynolds(V=V_max, D=tube_diameter, rho=rho, mu=mu)
Pr = Prandtl(Cp=Cp, mu=mu, k=k)
Nu = (0.183*Re**0.7*(bare_length/fin_height)**0.36
*(pitch_normal/fin_diameter)**0.06
*(fin_height/fin_diameter)**0.11*Pr**0.36)
staggered = abs(1 - pitch_normal/pitch_parallel) > 0.05
F2 = ESDU_tube_row_correction(tube_rows=tube_rows, staggered=staggered)
Nu *= F2
if Pr_wall is not None:
F1 = wall_factor(Pr=Pr, Pr_wall=Pr_wall, Pr_heating_coeff=0.26,
Pr_cooling_coeff=0.26,
property_option=WALL_FACTOR_PRANDTL)
Nu *= F1
h = k/tube_diameter*Nu
efficiency = fin_efficiency_Kern_Kraus(Do=tube_diameter,
D_fin=fin_diameter,
Pressure Drop of Air Flowing across Triangular Banks of Finned Tubes",
Chemical Engineering Progress Symp., Series 41, No. 59. Chem. Eng. Prog.
Symp. Series No. 41, "Heat Transfer - Houston".
.. [2] Mukherjee, R., and Geoffrey Hewitt. Practical Thermal Design of
Air-Cooled Heat Exchangers. New York: Begell House Publishers Inc.,U.S.,
2007.
.. [3] Kroger, Detlev. Air-Cooled Heat Exchangers and Cooling Towers:
Thermal-Flow Performance Evaluation and Design, Vol. 1. Tulsa, Okl:
PennWell Corp., 2004.
'''
fin_height = 0.5*(fin_diameter - tube_diameter)
V_max = m/(A_min*rho)
Re = Reynolds(V=V_max, D=tube_diameter, rho=rho, mu=mu)
Pr = Prandtl(Cp=Cp, mu=mu, k=k)
Nu = 0.134*Re**0.681*Pr**(1/3.)*(bare_length/fin_height)**0.2*(bare_length/fin_thickness)**0.1134
h = k/tube_diameter*Nu
efficiency = fin_efficiency_Kern_Kraus(Do=tube_diameter, D_fin=fin_diameter,
t_fin=fin_thickness, k_fin=k_fin, h=h)
h_total_area_basis = (efficiency*A_fin + A_tube_showing)/A*h
h_bare_tube_basis = h_total_area_basis*A_increase
return h_bare_tube_basis
References
----------
.. [1] A. Cavallini, J. R. Smith and R. Zecchin, A dimensionless correlation
for heat transfer in forced convection condensation, 6th International
Heat Transfer Conference., Tokyo, Japan (1974) 309-313.
.. [2] Kakaç, Sadik, ed. Boilers, Evaporators, and Condensers. 1st.
Wiley-Interscience, 1991.
.. [3] Balcılar, Muhammet, Ahmet Selim Dalkılıç, Berna Bolat, and Somchai
Wongwises. "Investigation of Empirical Correlations on the Determination
of Condensation Heat Transfer Characteristics during Downward Annular
Flow of R134a inside a Vertical Smooth Tube Using Artificial
Intelligence Algorithms." Journal of Mechanical Science and Technology
25, no. 10 (October 12, 2011): 2683-2701. doi:10.1007/s12206-011-0618-2.
'''
Prl = Prandtl(Cp=Cpl, mu=mul, k=kl)
Vl = m*(1-x)/(rhol*pi/4*D**2)
Vg = m*x/(rhog*pi/4*D**2)
Rel = Reynolds(V=Vl, D=D, rho=rhol, mu=mul)
Reg = Reynolds(V=Vg, D=D, rho=rhog, mu=mug)
'''The following was coded, and may be used instead of the above lines,
to check that the definitions of parameters here provide the same results
as those defined in [1]_.
G = m/(pi/4*D**2)
Re = G*D/mul
Rel = Re*(1-x)
Reg = Re*x/(mug/mul)'''
Reeq = Reg*(mug/mul)*(rhol/rhog)**0.5 + Rel
Nul = 0.05*Reeq**0.8*Prl**0.33
return Nul*kl/D # confirmed to be with respect to the liquid
Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a
Nucleate Pool Boiling Equation." International Journal of Heat and Mass
Transfer 34, no. 11 (November 1991): 2759-66.
doi:10.1016/0017-9310(91)90234-6.
.. [2] Fang, Xiande, Zhanru Zhou, and Dingkun Li. "Review of Correlations
of Flow Boiling Heat Transfer Coefficients for Carbon Dioxide."
International Journal of Refrigeration 36, no. 8 (December 2013):
2017-39. doi:10.1016/j.ijrefrig.2013.05.015.
.. [3] Bertsch, Stefan S., Eckhard A. Groll, and Suresh V. Garimella.
"Review and Comparative Analysis of Studies on Saturated Flow Boiling in
Small Channels." Nanoscale and Microscale Thermophysical Engineering 12,
no. 3 (September 4, 2008): 187-227. doi:10.1080/15567260802317357.
'''
G = m/(pi/4*D**2)
ReL = D*G/mul
Prl = Prandtl(Cp=Cpl, mu=mul, k=kl)
hl = turbulent_Dittus_Boelter(Re=ReL, Pr=Prl)*kl/D
F = (1 + x*Prl*(rhol/rhog - 1))**0.35
S = (1 + 0.055*F**0.1*ReL**0.16)**-1
# if horizontal:
# Fr = Froude(V=G/rhol, L=D, squared=True)
# if Fr < 0.05:
# ef = Fr**(0.1 - 2*Fr)
# es = Fr**0.5
# F *= ef
# S *= es
h_nb = Cooper(Te=Te, P=P, Pc=Pc, MW=MW)
return ((F*hl)**2 + (S*h_nb)**2)**0.5
----------
.. [1] Hewitt, G. L. Shires, T. Reg Bott G. F., George L. Shires, and T.
R. Bott. Process Heat Transfer. 1st edition. Boca Raton: CRC Press,
1994.
.. [2] "High-Fin Staggered Tube Banks: Heat Transfer and Pressure Drop for
Turbulent Single Phase Gas Flow." ESDU 86022 (October 1, 1986).
.. [3] Rabas, T. J., and J. Taborek. "Survey of Turbulent Forced-Convection
Heat Transfer and Pressure Drop Characteristics of Low-Finned Tube Banks
in Cross Flow." Heat Transfer Engineering 8, no. 2 (January 1987):
49-62.
'''
fin_height = 0.5*(fin_diameter - tube_diameter)
V_max = m/(A_min*rho)
Re = Reynolds(V=V_max, D=tube_diameter, rho=rho, mu=mu)
Pr = Prandtl(Cp=Cp, mu=mu, k=k)
Nu = 0.242*Re**0.658*(bare_length/fin_height)**0.297*(pitch_normal/pitch_parallel)**-0.091*Pr**(1/3.)
if tube_rows < 2:
F2 = 0.76
elif tube_rows < 3:
F2 = 0.84
elif tube_rows < 4:
F2 = 0.92
else:
F2 = 1.0
Nu *= F2
if Pr_wall is not None:
F1 = wall_factor(Pr=Pr, Pr_wall=Pr_wall, Pr_heating_coeff=0.26,
Pr_cooling_coeff=0.26,
property_option=WALL_FACTOR_PRANDTL)
References
----------
.. [1] Shah, M. M. "A General Correlation for Heat Transfer during Film
Condensation inside Pipes." International Journal of Heat and Mass
Transfer 22, no. 4 (April 1, 1979): 547-56.
doi:10.1016/0017-9310(79)90058-9.
.. [2] Shah, M. M., Heat Transfer During Film Condensation in Tubes and
Annuli: A Review of the Literature, ASHRAE Transactions, vol. 87, no.
3, pp. 1086-1100, 1981.
.. [3] Kakaç, Sadik, ed. Boilers, Evaporators, and Condensers. 1st.
Wiley-Interscience, 1991.
'''
VL = m/(rhol*pi/4*D**2)
ReL = Reynolds(V=VL, D=D, rho=rhol, mu=mul)
Prl = Prandtl(Cp=Cpl, k=kl, mu=mul)
hL = turbulent_Dittus_Boelter(ReL, Prl)*kl/D
Pr = P/Pc
return hL*((1-x)**0.8 + 3.8*x**0.76*(1-x)**0.04/Pr**0.38)