How to use the fluids.core.Prandtl function in fluids

To help you get started, we’ve selected a few fluids examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github CalebBell / ht / ht / boiling_flow.py View on Github external
t_dry_film = rhol*Hvap/q*(delta0 - C_delta0)
    if t_dry_film > tv:
        t_film = tv
        delta_end = delta0 - q/rhol/Hvap*tv # what could time possibly be?
        t_dry = 0
    else:
        t_film = t_dry_film
        delta_end = C_delta0
        t_dry = tv-t_film
    Ll = tau*G/rhol*(1-x)
    Ldry = t_dry*vp


    Prg = Prandtl(Cp=Cpg, k=kg, mu=mug)
    Prl = Prandtl(Cp=Cpl, k=kl, mu=mul)
    fg = (1.82*log10(Reg) - 1.64)**-2
    fl = (1.82*log10(Rel) - 1.64)**-2
    
    Nu_lam_Zl = 2*0.455*(Prl)**(1/3.)*(D*Rel/Ll)**0.5
    Nu_trans_Zl = turbulent_Gnielinski(Re=Rel, Pr=Prl, fd=fl)*(1 + (D/Ll)**(2/3.))
    if Ldry == 0:
        Nu_lam_Zg, Nu_trans_Zg = 0, 0
    else:
        Nu_lam_Zg = 2*0.455*(Prg)**(1/3.)*(D*Reg/Ldry)**0.5
        Nu_trans_Zg = turbulent_Gnielinski(Re=Reg, Pr=Prg, fd=fg)*(1 + (D/Ldry)**(2/3.))
        
    h_Zg = kg/D*(Nu_lam_Zg**4 + Nu_trans_Zg**4)**0.25
    h_Zl = kl/D*(Nu_lam_Zl**4 + Nu_trans_Zl**4)**0.25
        
    h_film = 2*kl/(delta0 + C_delta0)
    return tl/tau*h_Zl + t_film/tau*h_film + t_dry/tau*h_Zg
github CalebBell / ht / ht / boiling_flow.py View on Github external
tv = tau/(1 ++ rhog/rhol*((1.-x)/x))

    t_dry_film = rhol*Hvap/q*(delta0 - C_delta0)
    if t_dry_film > tv:
        t_film = tv
        delta_end = delta0 - q/rhol/Hvap*tv # what could time possibly be?
        t_dry = 0
    else:
        t_film = t_dry_film
        delta_end = C_delta0
        t_dry = tv-t_film
    Ll = tau*G/rhol*(1-x)
    Ldry = t_dry*vp


    Prg = Prandtl(Cp=Cpg, k=kg, mu=mug)
    Prl = Prandtl(Cp=Cpl, k=kl, mu=mul)
    fg = (1.82*log10(Reg) - 1.64)**-2
    fl = (1.82*log10(Rel) - 1.64)**-2
    
    Nu_lam_Zl = 2*0.455*(Prl)**(1/3.)*(D*Rel/Ll)**0.5
    Nu_trans_Zl = turbulent_Gnielinski(Re=Rel, Pr=Prl, fd=fl)*(1 + (D/Ll)**(2/3.))
    if Ldry == 0:
        Nu_lam_Zg, Nu_trans_Zg = 0, 0
    else:
        Nu_lam_Zg = 2*0.455*(Prg)**(1/3.)*(D*Reg/Ldry)**0.5
        Nu_trans_Zg = turbulent_Gnielinski(Re=Reg, Pr=Prg, fd=fg)*(1 + (D/Ldry)**(2/3.))
        
    h_Zg = kg/D*(Nu_lam_Zg**4 + Nu_trans_Zg**4)**0.25
    h_Zl = kl/D*(Nu_lam_Zl**4 + Nu_trans_Zl**4)**0.25
        
    h_film = 2*kl/(delta0 + C_delta0)
github CalebBell / ht / ht / boiling_flow.py View on Github external
----------
    .. [1] Bennett, Douglas L., and John C. Chen. "Forced Convective Boiling in
       Vertical Tubes for Saturated Pure Components and Binary Mixtures." 
       AIChE Journal 26, no. 3 (May 1, 1980): 454-61. doi:10.1002/aic.690260317.
    .. [2] Bennett, Douglas L., M.W. Davies and B.L. Hertzler, The Suppression 
       of Saturated Nucleate Boiling by Forced Convective Flow, American 
       Institute of Chemical Engineers Symposium Series, vol. 76, no. 199. 
       91-103, 1980.
    .. [3] Bertsch, Stefan S., Eckhard A. Groll, and Suresh V. Garimella. 
       "Review and Comparative Analysis of Studies on Saturated Flow Boiling in
       Small Channels." Nanoscale and Microscale Thermophysical Engineering 12,
       no. 3 (September 4, 2008): 187-227. doi:10.1080/15567260802317357.
    '''
    G = m/(pi/4*D**2)
    Rel = D*G*(1-x)/mul
    Prl = Prandtl(Cp=Cpl, mu=mul, k=kl)
    hl = turbulent_Dittus_Boelter(Re=Rel, Pr=Prl)*kl/D
    Xtt = Lockhart_Martinelli_Xtt(x=x, rhol=rhol, rhog=rhog, mul=mul, mug=mug)
    F = ((Prl+1)/2.)**0.444*(1 + Xtt**-0.5)**1.78
    X0 = 0.041*(sigma/(g*(rhol-rhog)))**0.5
    S = (1 - exp(-F*hl*X0/kl))/(F*hl*X0/kl)
    
    hnb = Forster_Zuber(Te=Te, dPsat=dPsat, Cpl=Cpl, kl=kl, mul=mul, sigma=sigma,
                       Hvap=Hvap, rhol=rhol, rhog=rhog)
    return hnb*S + hl*F
github CalebBell / ht / ht / boiling_plate.py View on Github external
2012): 325-35. doi:10.1016/j.ijrefrig.2011.11.002.
    .. [2] Huang, Jianchang. "Performance Analysis of Plate Heat Exchangers 
       Used as Refrigerant Evaporators," 2011. Thesis.
       http://wiredspace.wits.ac.za/handle/10539/9779
    .. [3] Amalfi, Raffaele L., Farzad Vakili-Farahani, and John R. Thome. 
       "Flow Boiling and Frictional Pressure Gradients in Plate Heat Exchangers.
       Part 1: Review and Experimental Database." International Journal of 
       Refrigeration 61 (January 2016): 166-84.
       doi:10.1016/j.ijrefrig.2015.07.010.
    .. [4] Eldeeb, Radia, Vikrant Aute, and Reinhard Radermacher. "A Survey of
       Correlations for Heat Transfer and Pressure Drop for Evaporation and 
       Condensation in Plate Heat Exchangers." International Journal of 
       Refrigeration 65 (May 2016): 12-26. doi:10.1016/j.ijrefrig.2015.11.013.
    '''
    do = 0.0146*angle*(2.*sigma/(g*(rhol - rhog)))**0.5
    Prl = Prandtl(Cp=Cpl, mu=mul, k=kl)
    alpha_l = thermal_diffusivity(k=kl, rho=rhol, Cp=Cpl)
    h = 1.87E-3*(kl/do)*(q*do/(kl*Tsat))**0.56*(Hvap*do**2/alpha_l**2)**0.31*Prl**0.33
    return h
github CalebBell / ht / ht / air_cooler.py View on Github external
----------
    .. [1] Hewitt, G. L. Shires, T. Reg Bott G. F., George L. Shires, and T.
       R. Bott. Process Heat Transfer. 1st edition. Boca Raton: CRC Press, 
       1994.
    .. [2] "High-Fin Staggered Tube Banks: Heat Transfer and Pressure Drop for
       Turbulent Single Phase Gas Flow." ESDU 86022 (October 1, 1986). 
    .. [3] Rabas, T. J., and J. Taborek. "Survey of Turbulent Forced-Convection
       Heat Transfer and Pressure Drop Characteristics of Low-Finned Tube Banks
       in Cross Flow."  Heat Transfer Engineering 8, no. 2 (January 1987): 
       49-62.
    '''
    fin_height = 0.5*(fin_diameter - tube_diameter)

    V_max = m/(A_min*rho)
    Re = Reynolds(V=V_max, D=tube_diameter, rho=rho, mu=mu)
    Pr = Prandtl(Cp=Cp, mu=mu, k=k)
    Nu = (0.183*Re**0.7*(bare_length/fin_height)**0.36
          *(pitch_normal/fin_diameter)**0.06
          *(fin_height/fin_diameter)**0.11*Pr**0.36)
    
    staggered = abs(1 - pitch_normal/pitch_parallel) > 0.05
    F2 = ESDU_tube_row_correction(tube_rows=tube_rows, staggered=staggered)
    Nu *= F2
    if Pr_wall is not None:
        F1 = wall_factor(Pr=Pr, Pr_wall=Pr_wall, Pr_heating_coeff=0.26, 
                         Pr_cooling_coeff=0.26, 
                         property_option=WALL_FACTOR_PRANDTL)
        Nu *= F1
    
    h = k/tube_diameter*Nu
    efficiency = fin_efficiency_Kern_Kraus(Do=tube_diameter, 
                                           D_fin=fin_diameter,
github CalebBell / ht / ht / air_cooler.py View on Github external
Pressure Drop of Air Flowing across Triangular Banks of Finned Tubes",
       Chemical Engineering Progress Symp., Series 41, No. 59. Chem. Eng. Prog.
       Symp. Series No. 41, "Heat Transfer - Houston".
    .. [2] Mukherjee, R., and Geoffrey Hewitt. Practical Thermal Design of 
       Air-Cooled Heat Exchangers. New York: Begell House Publishers Inc.,U.S.,
       2007.
    .. [3] Kroger, Detlev. Air-Cooled Heat Exchangers and Cooling Towers: 
       Thermal-Flow Performance Evaluation and Design, Vol. 1. Tulsa, Okl:
       PennWell Corp., 2004.
    '''
    fin_height = 0.5*(fin_diameter - tube_diameter)
    
    V_max = m/(A_min*rho)
    
    Re = Reynolds(V=V_max, D=tube_diameter, rho=rho, mu=mu)
    Pr = Prandtl(Cp=Cp, mu=mu, k=k)

    Nu = 0.134*Re**0.681*Pr**(1/3.)*(bare_length/fin_height)**0.2*(bare_length/fin_thickness)**0.1134

    h = k/tube_diameter*Nu
    efficiency = fin_efficiency_Kern_Kraus(Do=tube_diameter, D_fin=fin_diameter,
                                           t_fin=fin_thickness, k_fin=k_fin, h=h)
    h_total_area_basis = (efficiency*A_fin + A_tube_showing)/A*h
    h_bare_tube_basis = h_total_area_basis*A_increase
        
    return h_bare_tube_basis
github CalebBell / ht / ht / condensation.py View on Github external
References
    ----------
    .. [1] A. Cavallini, J. R. Smith and R. Zecchin, A dimensionless correlation
       for heat transfer in forced convection condensation, 6th International 
       Heat Transfer Conference., Tokyo, Japan (1974) 309-313. 
    .. [2] Kakaç, Sadik, ed. Boilers, Evaporators, and Condensers. 1st. 
       Wiley-Interscience, 1991.
    .. [3] Balcılar, Muhammet, Ahmet Selim Dalkılıç, Berna Bolat, and Somchai 
       Wongwises. "Investigation of Empirical Correlations on the Determination
       of Condensation Heat Transfer Characteristics during Downward Annular 
       Flow of R134a inside a Vertical Smooth Tube Using Artificial 
       Intelligence Algorithms." Journal of Mechanical Science and Technology 
       25, no. 10 (October 12, 2011): 2683-2701. doi:10.1007/s12206-011-0618-2.
    '''
    Prl = Prandtl(Cp=Cpl, mu=mul, k=kl)
    Vl = m*(1-x)/(rhol*pi/4*D**2)
    Vg = m*x/(rhog*pi/4*D**2)
    Rel = Reynolds(V=Vl, D=D, rho=rhol, mu=mul)    
    Reg = Reynolds(V=Vg, D=D, rho=rhog, mu=mug)
    '''The following was coded, and may be used instead of the above lines,
    to check that the definitions of parameters here provide the same results
    as those defined in [1]_.
    G = m/(pi/4*D**2)
    Re = G*D/mul
    Rel = Re*(1-x)
    Reg = Re*x/(mug/mul)'''
    Reeq = Reg*(mug/mul)*(rhol/rhog)**0.5 + Rel
    Nul = 0.05*Reeq**0.8*Prl**0.33
    return Nul*kl/D # confirmed to be with respect to the liquid
github CalebBell / ht / ht / boiling_flow.py View on Github external
Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a 
       Nucleate Pool Boiling Equation." International Journal of Heat and Mass 
       Transfer 34, no. 11 (November 1991): 2759-66. 
       doi:10.1016/0017-9310(91)90234-6. 
    .. [2] Fang, Xiande, Zhanru Zhou, and Dingkun Li. "Review of Correlations 
       of Flow Boiling Heat Transfer Coefficients for Carbon Dioxide." 
       International Journal of Refrigeration 36, no. 8 (December 2013): 
       2017-39. doi:10.1016/j.ijrefrig.2013.05.015.
    .. [3] Bertsch, Stefan S., Eckhard A. Groll, and Suresh V. Garimella. 
       "Review and Comparative Analysis of Studies on Saturated Flow Boiling in
       Small Channels." Nanoscale and Microscale Thermophysical Engineering 12,
       no. 3 (September 4, 2008): 187-227. doi:10.1080/15567260802317357.
    '''
    G = m/(pi/4*D**2)
    ReL = D*G/mul
    Prl = Prandtl(Cp=Cpl, mu=mul, k=kl)
    hl = turbulent_Dittus_Boelter(Re=ReL, Pr=Prl)*kl/D
    F = (1 + x*Prl*(rhol/rhog - 1))**0.35
    S = (1 + 0.055*F**0.1*ReL**0.16)**-1
#    if horizontal:
#        Fr = Froude(V=G/rhol, L=D, squared=True)
#        if Fr < 0.05:
#            ef = Fr**(0.1 - 2*Fr)
#            es = Fr**0.5
#            F *= ef
#            S *= es
    h_nb = Cooper(Te=Te, P=P, Pc=Pc, MW=MW)
    return ((F*hl)**2 + (S*h_nb)**2)**0.5
github CalebBell / ht / ht / air_cooler.py View on Github external
----------
    .. [1] Hewitt, G. L. Shires, T. Reg Bott G. F., George L. Shires, and T.
       R. Bott. Process Heat Transfer. 1st edition. Boca Raton: CRC Press, 
       1994.
    .. [2] "High-Fin Staggered Tube Banks: Heat Transfer and Pressure Drop for
       Turbulent Single Phase Gas Flow." ESDU 86022 (October 1, 1986). 
    .. [3] Rabas, T. J., and J. Taborek. "Survey of Turbulent Forced-Convection
       Heat Transfer and Pressure Drop Characteristics of Low-Finned Tube Banks
       in Cross Flow."  Heat Transfer Engineering 8, no. 2 (January 1987): 
       49-62.
    '''
    fin_height = 0.5*(fin_diameter - tube_diameter)

    V_max = m/(A_min*rho)
    Re = Reynolds(V=V_max, D=tube_diameter, rho=rho, mu=mu)
    Pr = Prandtl(Cp=Cp, mu=mu, k=k)
    Nu = 0.242*Re**0.658*(bare_length/fin_height)**0.297*(pitch_normal/pitch_parallel)**-0.091*Pr**(1/3.)

    if tube_rows < 2:
        F2 = 0.76
    elif tube_rows < 3:
        F2 = 0.84
    elif tube_rows < 4:
        F2 = 0.92
    else:
        F2 = 1.0

    Nu *= F2
    if Pr_wall is not None:
        F1 = wall_factor(Pr=Pr, Pr_wall=Pr_wall, Pr_heating_coeff=0.26, 
                         Pr_cooling_coeff=0.26, 
                         property_option=WALL_FACTOR_PRANDTL)
github CalebBell / ht / ht / condensation.py View on Github external
References
    ----------
    .. [1] Shah, M. M. "A General Correlation for Heat Transfer during Film 
       Condensation inside Pipes." International Journal of Heat and Mass 
       Transfer 22, no. 4 (April 1, 1979): 547-56. 
       doi:10.1016/0017-9310(79)90058-9. 
    .. [2] Shah, M. M., Heat Transfer During Film Condensation in Tubes and 
       Annuli: A Review of the Literature, ASHRAE Transactions, vol. 87, no. 
       3, pp. 1086-1100, 1981.
    .. [3] Kakaç, Sadik, ed. Boilers, Evaporators, and Condensers. 1st. 
       Wiley-Interscience, 1991.
    '''
    VL = m/(rhol*pi/4*D**2)
    ReL = Reynolds(V=VL, D=D, rho=rhol, mu=mul)
    Prl = Prandtl(Cp=Cpl, k=kl, mu=mul)
    hL = turbulent_Dittus_Boelter(ReL, Prl)*kl/D
    Pr = P/Pc
    return hL*((1-x)**0.8 + 3.8*x**0.76*(1-x)**0.04/Pr**0.38)