How to use the flaky.defaults function in flaky

To help you get started, we’ve selected a few flaky examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github box / flaky / test / test_nose / test_flaky_nose_plugin.py View on Github external
def test_flaky_plugin_handles_bare_test(self):
        self._mock_test_names = self._mock_test_method_name
        self._mock_test.test = Mock()
        self._expect_call_test_address()
        attrib = defaults.default_flaky_attributes(2, 1)
        for name, value in attrib.items():
            setattr(
                self._mock_test.test,
                name,
                value,
            )
        delattr(self._mock_test, self._mock_test_method_name)
        self._flaky_plugin.prepareTestCase(self._mock_test_case)
        self.assertTrue(self._flaky_plugin.handleError(
            self._mock_test_case,
            self._mock_error,
        ))
        self.assertFalse(self._flaky_plugin.handleError(
            self._mock_test_case,
            self._mock_error,
        ))
github box / flaky / flaky / _flaky_plugin.py View on Github external
Filter function to decide whether a test should be rerun if it fails.
            Function signature is as follows:
                (err, name, test, plugin) -> should_rerun
            - err (`tuple` of `class`, :class:`Exception`, `traceback`):
                Information about the test failure (from sys.exc_info())
            - name (`unicode`):
                The test name
            - test (:class:`nose.case.Test` or :class:`Function`):
                The test that has raised an error
            - plugin (:class:`FlakyNosePlugin` or :class:`FlakyPytestPlugin`):
                The flaky plugin. Has a :prop:`stream` that can be written to in
                order to add to the Flaky Report.
        :type rerun_filter:
            `callable`
        """
        attrib_dict = defaults.default_flaky_attributes(max_runs, min_passes, rerun_filter)
        for attr, value in attrib_dict.items():
            cls._set_flaky_attribute(test, attr, value)