How to use the farm.utils.set_all_seeds function in farm

To help you get started, we’ve selected a few farm examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github deepset-ai / FARM / test / test_question_answering.py View on Github external
def test_qa(caplog):
    caplog.set_level(logging.CRITICAL)

    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    batch_size = 2
    n_epochs = 1
    evaluate_every = 4
    base_LM_model = "bert-base-cased"

    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=base_LM_model, do_lower_case=False
    )
    label_list = ["start_token", "end_token"]
    processor = SquadProcessor(
        tokenizer=tokenizer,
        max_seq_len=20,
        doc_stride=10,
        max_query_length=6,
        train_filename="train-sample.json",
github deepset-ai / FARM / test / test_ner.py View on Github external
def test_ner(caplog=None):
    if caplog:
        caplog.set_level(logging.CRITICAL)

    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=True)
    n_epochs = 5
    batch_size = 2
    evaluate_every = 1
    lang_model = "bert-base-german-cased"

    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=lang_model, do_lower_case=False
    )

    ner_labels = ["[PAD]", "X", "O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-OTH",
                  "I-OTH"]

    processor = NERProcessor(
        tokenizer=tokenizer,
        max_seq_len=8,
github deepset-ai / FARM / test / test_doc_classification_roberta.py View on Github external
def test_doc_classification():
    #caplog.set_level(logging.CRITICAL)

    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=False)
    n_epochs = 1
    batch_size = 1
    evaluate_every = 2
    lang_model = "roberta-base"

    tokenizer = RobertaTokenizer.from_pretrained(
        pretrained_model_name_or_path=lang_model)

    processor = TextClassificationProcessor(tokenizer=tokenizer,
                                            max_seq_len=8,
                                            data_dir="samples/doc_class",
                                            train_filename="train-sample.tsv",
                                            label_list=["OTHER", "OFFENSE"],
                                            metric="f1_macro",
                                            dev_filename="test-sample.tsv",
github deepset-ai / FARM / test / test_lm_finetuning.py View on Github external
def test_lm_finetuning_no_next_sentence(caplog):
    caplog.set_level(logging.CRITICAL)

    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=False)
    n_epochs = 1
    batch_size = 1
    evaluate_every = 2
    lang_model = "bert-base-cased"

    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=lang_model, do_lower_case=False
    )

    processor = BertStyleLMProcessor(
        data_dir="samples/lm_finetuning",
        train_filename="train-sample.txt",
        test_filename="test-sample.txt",
        dev_filename=None,
        tokenizer=tokenizer,
github deepset-ai / FARM / test / test_lm_finetuning.py View on Github external
def test_lm_finetuning(caplog):
    caplog.set_level(logging.CRITICAL)

    set_all_seeds(seed=42)
    device, n_gpu = initialize_device_settings(use_cuda=False)
    n_epochs = 1
    batch_size = 1
    evaluate_every = 2
    lang_model = "bert-base-cased"

    tokenizer = Tokenizer.load(
        pretrained_model_name_or_path=lang_model, do_lower_case=False
    )

    processor = BertStyleLMProcessor(
        data_dir="samples/lm_finetuning",
        train_filename="train-sample.txt",
        test_filename="test-sample.txt",
        dev_filename=None,
        tokenizer=tokenizer,
github deepset-ai / FARM / examples / question_answering.py View on Github external
from farm.train import Trainer
from farm.utils import set_all_seeds, MLFlowLogger, initialize_device_settings

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)

ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
ml_logger.init_experiment(experiment_name="Public_FARM", run_name="Run_question_answering")

##########################
########## Settings
##########################
set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=True)
batch_size = 5
n_epochs = 2
evaluate_every = 500
base_LM_model = "bert-base-cased"
train_filename="train-v2.0.json"
dev_filename="dev-v2.0.json"

# 1.Create a tokenizer
tokenizer = Tokenizer.load(
    pretrained_model_name_or_path=base_LM_model, do_lower_case=False
)
# 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
label_list = ["start_token", "end_token"]
metric = "squad"
processor = SquadProcessor(
github deepset-ai / FARM / examples / lm_pretraining_debug.py View on Github external
from transformers.tokenization_bert import BertTokenizer


logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)

ml_logger = MLFlowLogger(tracking_uri="")
ml_logger.init_experiment(experiment_name="from_scratch", run_name="debug")

#########################
######## Settings
########################
set_all_seeds(seed=39)
device, n_gpu = initialize_device_settings(use_cuda=True)
learning_rate = 1e-5
batch_size = 45
max_seq_len = 128
n_epochs = 100
evaluate_every = 50
vocab_size = 30522
# dev_filename = None
save_dir = "../saved_models/from_scratch"
predictions_file = save_dir + "/predictions.json"
full_predictions_file = save_dir + "/full_predictions.json"
inference_multiprocessing = True
train = True
inference = True

if train:
github deepset-ai / FARM / examples / doc_classification_crossvalidation.py View on Github external
level=logging.INFO)
# reduce verbosity from transformers library
logging.getLogger('transformers').setLevel(logging.WARNING)

# ml_logger = MLFlowLogger(tracking_uri="https://public-mlflow.deepset.ai/")
# for local logging instead:
ml_logger = MLFlowLogger(tracking_uri="logs")
# ml_logger.init_experiment(experiment_name="Public_FARM", run_name="DocClassification_ES_f1_1")

##########################
########## Settings
##########################
xval_folds = 5
xval_stratified = True

set_all_seeds(seed=42)
device, n_gpu = initialize_device_settings(use_cuda=True)
n_epochs = 20
batch_size = 32
evaluate_every = 100
lang_model = "bert-base-german-cased"

# 1.Create a tokenizer
tokenizer = Tokenizer.load(
    pretrained_model_name_or_path=lang_model,
    do_lower_case=False)

# The evaluation on the dev-set can be done with one of the predefined metrics or with a
# metric defined as a function from (preds, labels) to a dict that contains all the actual
# metrics values. The function must get registered under a string name and the string name must
# be used.
# For xval, we also store the actual predictions and labels in each result so we can