Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_ylm_phase():
texp = 0.05
map = starry.Map(ydeg=2)
np.random.seed(11)
map[1:, :] = 0.1 * np.random.randn(8)
theta = np.linspace(0, 360, 10000)
t = np.linspace(-0.2, 0.2, 10000)
orbit = exo.orbits.KeplerianOrbit(period=1.0)
flux = map.flux(theta=theta)
window = int(texp / (t[1] - t[0]))
fluence_mavg = moving_average(flux, window)
fluence_starry = map.flux(t=t, orbit=orbit, theta=theta,
texp=texp, oversample=50).eval()
# The error is primarily coming from our moving average
# integrator, so let's be lenient
f1 = fluence_mavg[window:-window]
f2 = fluence_starry[window:-window]
assert np.allclose(f1, f2, atol=1e-4, rtol=1e-4)
dt = np.linspace(-0.5, 0.5, oversample)
stencil[1:-1:2] = 4
stencil[2:-1:2] = 2
else:
raise ValueError("Parameter `order` must be <= 2")
stencil /= np.sum(stencil)
if texp.ndim == 0:
dt = texp * dt
else:
dt = tt.shape_padright(texp) * dt
t = tt.shape_padright(t) + dt
t = tt.reshape(t, (-1,))
# Compute the relative positions of all bodies
orbit = exoplanet.orbits.KeplerianOrbit(
period=sec_porb,
t0=sec_t0,
incl=sec_iorb,
ecc=sec_ecc,
omega=sec_w,
Omega=sec_Omega,
m_planet=sec_m,
m_star=pri_m,
r_star=pri_r,
)
try:
x, y, z = orbit.get_relative_position(
t, light_delay=self.light_delay
)
except TypeError:
if self.light_delay:
# The amlitudes should be sorted
pm.Potential("logK_order", tt.switch(logK[1:] > logK[:-1], -np.inf, 0.0))
# We also want to keep period physical but this probably won't be hit
pm.Potential("P_bound", tt.switch(P <= 0, -np.inf, 0.0))
# Eccentricity & argument of periasteron
ecc = pm.Uniform("ecc", lower=0, upper=0.99, shape=N_pl, testval=eccs)
omega = xo.distributions.Angle("omega", shape=N_pl, testval=omegas)
# Jitter & a quadratic RV trend
# logs = pm.Normal("logs", mu=np.log(np.median(yerr)), sd=5.0)
trend = pm.Normal("trend", mu=0, sd=10.0 ** -np.arange(3)[::-1], shape=3)
# Set up the orbit
orbit = xo.orbits.KeplerianOrbit(period=P, t0=t0, ecc=ecc, omega=omega)
# Set up the RV model and save it as a deterministic
# for plotting purposes later
vrad = orbit.get_radial_velocity(x, K=tt.exp(logK))
if N_pl == 1:
vrad = vrad[:, None]
# Define the background model
A = np.vander(x - 0.5 * (x.min() + x.max()), 3)
bkg = tt.dot(A, trend)
# Sum over planets and add the background to get the full model
rv_model = tt.sum(vrad, axis=-1) + bkg
# Simulate the data
y_true = xo.eval_in_model(rv_model)
sec_porb,
sec_ecc,
sec_w,
sec_Omega,
sec_iorb,
sec_inc,
sec_obl,
sec_y,
sec_u,
sec_f,
sec_alpha,
sec_sigr,
):
"""Render all of the bodies in the system."""
# Compute the relative positions of all bodies
orbit = exoplanet.orbits.KeplerianOrbit(
period=sec_porb,
t0=sec_t0,
incl=sec_iorb,
ecc=sec_ecc,
omega=sec_w,
Omega=sec_Omega,
m_planet=sec_m,
m_star=pri_m,
r_star=pri_r,
)
try:
x, y, z = orbit.get_relative_position(
t, light_delay=self.light_delay
)
except TypeError:
if self.light_delay: