Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self, load_file=None):
super(ESP32FirmwareImage, self).__init__()
self.secure_pad = False
self.flash_mode = 0
self.flash_size_freq = 0
self.version = 1
self.wp_pin = self.WP_PIN_DISABLED
# SPI pin drive levels
self.clk_drv = 0
self.q_drv = 0
self.d_drv = 0
self.cs_drv = 0
self.hd_drv = 0
self.wp_drv = 0
self.append_digest = True
if load_file is not None:
def digest_secure_bootloader(args):
""" Calculate the digest of a bootloader image, in the same way the hardware
secure boot engine would do so. Can be used with a pre-loaded key to update a
secure bootloader. """
if args.iv is not None:
print("WARNING: --iv argument is for TESTING PURPOSES ONLY")
iv = args.iv.read(128)
else:
iv = os.urandom(128)
plaintext_image = args.image.read()
args.image.seek(0)
# secure boot engine reads in 128 byte blocks (ie SHA512 block
# size), but also doesn't look for any appended SHA-256 digest
fw_image = esptool.ESP32FirmwareImage(args.image)
if fw_image.append_digest:
if len(plaintext_image) % 128 <= 32:
# ROM bootloader will read to the end of the 128 byte block, but not
# to the end of the SHA-256 digest at the end
new_len = len(plaintext_image) - (len(plaintext_image) % 128)
plaintext_image = plaintext_image[:new_len]
# if image isn't 128 byte multiple then pad with 0xFF (ie unwritten flash)
# as this is what the secure boot engine will see
if len(plaintext_image) % 128 != 0:
plaintext_image += b"\xFF" * (128 - (len(plaintext_image) % 128))
plaintext = iv + plaintext_image
# Secure Boot digest algorithm in hardware uses AES256 ECB to
# produce a ciphertext, then feeds output through SHA-512 to
def elf2image(args):
e = ELFFile(args.input)
if args.chip == 'auto': # Default to ESP8266 for backwards compatibility
print("Creating image for ESP8266...")
args.chip = 'esp8266'
if args.chip == 'esp32':
image = ESP32FirmwareImage()
image.secure_pad = args.secure_pad
elif args.version == '1': # ESP8266
image = ESP8266ROMFirmwareImage()
else:
image = ESP8266V2FirmwareImage()
image.entrypoint = e.entrypoint
image.segments = e.sections # ELFSection is a subclass of ImageSegment
image.flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode]
image.flash_size_freq = image.ROM_LOADER.FLASH_SIZES[args.flash_size]
image.flash_size_freq += {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq]
if args.output is None:
args.output = image.default_output_name(args.input)
image.save(args.output)
def LoadFirmwareImage(chip, filename):
""" Load a firmware image. Can be for ESP8266 or ESP32. ESP8266 images will be examined to determine if they are
original ROM firmware images (ESP8266ROMFirmwareImage) or "v2" OTA bootloader images.
Returns a BaseFirmwareImage subclass, either ESP8266ROMFirmwareImage (v1) or ESP8266V2FirmwareImage (v2).
"""
with open(filename, 'rb') as f:
if chip.lower() == 'esp32':
return ESP32FirmwareImage(f)
else: # Otherwise, ESP8266 so look at magic to determine the image type
magic = ord(f.read(1))
f.seek(0)
if magic == ESPLoader.ESP_IMAGE_MAGIC:
return ESP8266ROMFirmwareImage(f)
elif magic == ESPBOOTLOADER.IMAGE_V2_MAGIC:
return ESP8266V2FirmwareImage(f)
else:
raise FatalError("Invalid image magic number: %d" % magic)
def elf2image(args):
e = ELFFile(args.input)
if args.chip == 'auto': # Default to ESP8266 for backwards compatibility
print("Creating image for ESP8266...")
args.chip = 'esp8266'
if args.chip == 'esp32':
image = ESP32FirmwareImage()
image.secure_pad = args.secure_pad
elif args.version == '1': # ESP8266
image = ESP8266ROMFirmwareImage()
else:
image = ESP8266V2FirmwareImage()
image.entrypoint = e.entrypoint
image.segments = e.sections # ELFSection is a subclass of ImageSegment
image.flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode]
image.flash_size_freq = image.ROM_LOADER.FLASH_SIZES[args.flash_size]
image.flash_size_freq += {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq]
if args.elf_sha256_offset:
image.elf_sha256 = e.sha256()
image.elf_sha256_offset = args.elf_sha256_offset
image.verify()
def LoadFirmwareImage(chip, filename):
""" Load a firmware image. Can be for ESP8266 or ESP32. ESP8266 images will be examined to determine if they are
original ROM firmware images (ESP8266ROMFirmwareImage) or "v2" OTA bootloader images.
Returns a BaseFirmwareImage subclass, either ESP8266ROMFirmwareImage (v1) or ESP8266V2FirmwareImage (v2).
"""
with open(filename, 'rb') as f:
if chip.lower() == 'esp32':
return ESP32FirmwareImage(f)
else: # Otherwise, ESP8266 so look at magic to determine the image type
magic = ord(f.read(1))
f.seek(0)
if magic == ESPLoader.ESP_IMAGE_MAGIC:
return ESP8266ROMFirmwareImage(f)
elif magic == ESPBOOTLOADER.IMAGE_V2_MAGIC:
return ESP8266V2FirmwareImage(f)
else:
raise FatalError("Invalid image magic number: %d" % magic)
def digest_secure_bootloader(args):
""" Calculate the digest of a bootloader image, in the same way the hardware
secure boot engine would do so. Can be used with a pre-loaded key to update a
secure bootloader. """
if args.iv is not None:
print("WARNING: --iv argument is for TESTING PURPOSES ONLY")
iv = args.iv.read(128)
else:
iv = os.urandom(128)
plaintext_image = args.image.read()
args.image.seek(0)
# secure boot engine reads in 128 byte blocks (ie SHA512 block
# size), but also doesn't look for any appended SHA-256 digest
fw_image = esptool.ESP32FirmwareImage(args.image)
if fw_image.append_digest:
if len(plaintext_image) % 128 <= 32:
# ROM bootloader will read to the end of the 128 byte block, but not
# to the end of the SHA-256 digest at the end
new_len = len(plaintext_image) - (len(plaintext_image) % 128)
plaintext_image = plaintext_image[:new_len]
# if image isn't 128 byte multiple then pad with 0xFF (ie unwritten flash)
# as this is what the secure boot engine will see
if len(plaintext_image) % 128 != 0:
plaintext_image += b"\xFF" * (128 - (len(plaintext_image) % 128))
plaintext = iv + plaintext_image
# Secure Boot digest algorithm in hardware uses AES256 ECB to
# produce a ciphertext, then feeds output through SHA-512 to