How to use the eemeter.generator.MonthlyBillingConsumptionGenerator function in eemeter

To help you get started, we’ve selected a few eemeter examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github openeemeter / eemeter / tests / fixtures / consumption.py View on Github external
def generated_consumption_data_with_n_periods_cdd_1(request,
        gsod_722880_2012_2014_weather_source):
    model_params, period, n_periods_1, n_periods_2, n_periods_3 = request.param
    model = AverageDailyTemperatureSensitivityModel(cooling=True,heating=True)
    params = {
        "base_daily_consumption": model_params[0],
        "heating_slope": model_params[1],
        "heating_balance_temperature": model_params[2],
        "cooling_slope": model_params[3],
        "cooling_balance_temperature": model_params[4]
    }
    gen = MonthlyBillingConsumptionGenerator("electricity", "kWh", "degF",
            model, params)

    datetimes = generate_monthly_billing_datetimes(period, dist=randint(30,31))
    consumption_data = gen.generate(gsod_722880_2012_2014_weather_source,
            datetimes)
    return consumption_data, n_periods_1, n_periods_2, n_periods_3
github openeemeter / eemeter / tests / fixtures / consumption.py View on Github external
def generated_consumption_data_with_n_periods_hdd_1(request,
        gsod_722880_2012_2014_weather_source):
    model_params, period, n_periods_1, n_periods_2, n_periods_3 = request.param
    model = AverageDailyTemperatureSensitivityModel(cooling=True,heating=True)
    params = {
        "base_daily_consumption": model_params[0],
        "heating_slope": model_params[1],
        "heating_balance_temperature": model_params[2],
        "cooling_slope": model_params[3],
        "cooling_balance_temperature": model_params[4]
    }
    gen = MonthlyBillingConsumptionGenerator("electricity", "kWh", "degF",
            model, params)

    datetimes = generate_monthly_billing_datetimes(period, dist=randint(30,31))
    consumption_data = gen.generate(gsod_722880_2012_2014_weather_source,
            datetimes)
    return consumption_data, n_periods_1, n_periods_2, n_periods_3
github openeemeter / eemeter / tests / test_generator.py View on Github external
def consumption_generator_no_base_load():
    model = AverageDailyTemperatureSensitivityModel(heating=True, cooling=True)
    params = {
        "base_daily_consumption": 0.0,
        "heating_slope": 1.0,
        "heating_balance_temperature": 65.0,
        "cooling_slope": 1.0,
        "cooling_balance_temperature": 75.0
        }
    generator = MonthlyBillingConsumptionGenerator("electricity", "kWh", "degF",
            model, params)
    return generator
github openeemeter / eemeter / tests / fixtures / consumption.py View on Github external
def generated_consumption_data_with_hdd_1(request,
        gsod_722880_2012_2014_weather_source):
    model_params, period, total_hdd, base, temp_unit = request.param

    model = AverageDailyTemperatureSensitivityModel(cooling=True,heating=True)
    params = {
        "base_daily_consumption": model_params[0],
        "heating_slope": model_params[1],
        "heating_balance_temperature": model_params[2],
        "cooling_slope": model_params[3],
        "cooling_balance_temperature": model_params[4]
    }
    gen = MonthlyBillingConsumptionGenerator("electricity", "kWh", "degF",
            model, params)

    datetimes = generate_monthly_billing_datetimes(period, dist=randint(30,31))
    consumption_data = gen.generate(gsod_722880_2012_2014_weather_source,
            datetimes)

    return consumption_data, total_hdd, base, temp_unit
github openeemeter / eemeter / tests / test_meter_bpi2400.py View on Github external
"cooling_slope": elec_param_list[4],
    }

    gas_params = {
        "base_daily_consumption": gas_param_list[0],
        "heating_balance_temperature": gas_param_list[1],
        "heating_slope": gas_param_list[2],
    }

    period = Period(datetime(2012, 1, 1, tzinfo=pytz.utc),
            datetime(2014, 12, 31, tzinfo=pytz.utc))
    datetimes = generate_monthly_billing_datetimes(period, randint(30,31))
    elec_model = AverageDailyTemperatureSensitivityModel(cooling=True, heating=True)
    gas_model = AverageDailyTemperatureSensitivityModel(cooling=False, heating=True)
    gen_elec = MonthlyBillingConsumptionGenerator("electricity", "kWh", temp_unit, elec_model, elec_params)
    gen_gas = MonthlyBillingConsumptionGenerator("natural_gas", "therm", temp_unit, gas_model, gas_params)
    elec_consumptions = gen_elec.generate(gsod_722880_2012_2014_weather_source, datetimes)
    gas_consumptions = gen_gas.generate(gsod_722880_2012_2014_weather_source, datetimes)

    average_daily_usages_elec = elec_consumptions.average_daily_consumptions()[0]
    average_daily_usages_gas = gas_consumptions.average_daily_consumptions()[0]

    return elec_consumptions, gas_consumptions, elec_param_list,\
            gas_param_list, normal_cdd, normal_hdd, \
            cvrmse_electricity, cvrmse_natural_gas, \
            n_periods, time_span, total_cdd, total_hdd, temp_unit, \
            average_daily_usages_elec, average_daily_usages_gas
github openeemeter / eemeter / tests / test_meter_default.py View on Github external
}
    elec_gen = MonthlyBillingConsumptionGenerator("electricity", "kWh", temp_unit,
            elec_model, elec_params)
    elec_consumption_data = elec_gen.generate(gsod_722880_2012_2014_weather_source, datetimes)
    elec_consumption_kWh_per_day, elec_consumption_n_days = \
            elec_consumption_data.average_daily_consumptions()
    elec_params = elec_model.param_type(elec_params)

    # generate natural_gas consumption
    gas_model = AverageDailyTemperatureSensitivityModel(cooling=False,heating=True)
    gas_params = {
        "base_daily_consumption": gas_model_params[0],
        "heating_balance_temperature": gas_model_params[1],
        "heating_slope": gas_model_params[2],
    }
    gas_gen = MonthlyBillingConsumptionGenerator("natural_gas", "therm", temp_unit,
            gas_model, gas_params)
    gas_consumption_data = gas_gen.generate(gsod_722880_2012_2014_weather_source, datetimes)
    gas_consumption_kWh_per_day, gas_consumption_n_days = \
            gas_consumption_data.average_daily_consumptions()
    gas_params = gas_model.param_type(gas_params)

    fixture = elec_consumption_data, gas_consumption_data, \
            elec_params, gas_params, \
            elec_annualized_usage, gas_annualized_usage, \
            elec_gross_savings, gas_gross_savings, \
            elec_rmse, gas_rmse, \
            elec_r_squared, gas_r_squared, \
            elec_consumption_kWh_per_day, gas_consumption_kWh_per_day, \
            elec_consumption_n_days, gas_consumption_n_days, \
            temp_unit, retrofit_start_date, retrofit_completion_date, \
            cdd_tmy, hdd_tmy, total_cdd, total_hdd
github openeemeter / eemeter / eemeter / examples.py View on Github external
"heating_balance_temperature": 68,
    }
    params_g_r = {
        "heating_slope": .1,
        "base_daily_consumption": 1,
        "heating_balance_temperature": 68,
    }

    #generators
    gen_e_b = MonthlyBillingConsumptionGenerator("electricity", "kWh", "degF",
            model_e, params_e_b)
    gen_e_r = MonthlyBillingConsumptionGenerator("electricity", "kWh", "degF",
            model_e, params_e_r)
    gen_g_b = MonthlyBillingConsumptionGenerator("natural_gas", "therm", "degF",
            model_g, params_g_b)
    gen_g_r = MonthlyBillingConsumptionGenerator("natural_gas", "therm", "degF",
            model_g, params_g_r)

    # time periods
    period = Period(datetime(2011,1,1,tzinfo=pytz.utc), datetime(2015,1,1,tzinfo=pytz.utc))
    datetimes = generate_monthly_billing_datetimes(period, dist=randint(30,31))

    # consumption data
    cd_e_b = gen_e_b.generate(weather_source, datetimes, daily_noise_dist=None)
    cd_e_r = gen_e_r.generate(weather_source, datetimes, daily_noise_dist=None)
    cd_g_b = gen_g_b.generate(weather_source, datetimes, daily_noise_dist=None)
    cd_g_r = gen_g_r.generate(weather_source, datetimes, daily_noise_dist=None)

    # periods
    periods = cd_e_b.periods()
    reporting_period = Period(datetime(2013,1,1,tzinfo=pytz.utc), datetime(2015,1,1,tzinfo=pytz.utc))
    baseline_period = Period(datetime(2011,1,1,tzinfo=pytz.utc), datetime(2013,1,1,tzinfo=pytz.utc))
github openeemeter / eemeter / eemeter / generator.py View on Github external
annualized_usage_meter = AnnualizedUsageMeter(temperature_unit_name,
                model)
        baseline_annualized_usage = annualized_usage_meter.evaluate_raw(
                model_params=baseline_params,
                weather_normal_source=weather_normal_source)["annualized_usage"]
        reporting_annualized_usage = annualized_usage_meter.evaluate_raw(
                model_params=reporting_params,
                weather_normal_source=weather_normal_source)["annualized_usage"]
        estimated_annualized_savings = baseline_annualized_usage - \
                reporting_annualized_usage

        baseline_generator = MonthlyBillingConsumptionGenerator(fuel_type,
                consumption_unit_name, temperature_unit_name, model,
                baseline_params)
        reporting_generator = MonthlyBillingConsumptionGenerator(fuel_type,
                consumption_unit_name, temperature_unit_name, model,
                reporting_params)

        datetimes = generate_monthly_billing_datetimes(period, dist=None)

        baseline_consumption_data = baseline_generator.generate(
                weather_source, datetimes, daily_noise_dist=noise)
        reporting_consumption_data = reporting_generator.generate(
                weather_source, datetimes, daily_noise_dist=noise)

        baseline_data = baseline_consumption_data.data
        reporting_data = reporting_consumption_data.data
        periods = baseline_consumption_data.periods()

        records = []
        for bl_data, rp_data, period in zip(baseline_data, reporting_data,
github openeemeter / eemeter / eemeter / examples.py View on Github external
"heating_slope": .2,
        "base_daily_consumption": 2,
        "heating_balance_temperature": 68,
    }
    params_g_r = {
        "heating_slope": .1,
        "base_daily_consumption": 1,
        "heating_balance_temperature": 68,
    }

    #generators
    gen_e_b = MonthlyBillingConsumptionGenerator("electricity", "kWh", "degF",
            model_e, params_e_b)
    gen_e_r = MonthlyBillingConsumptionGenerator("electricity", "kWh", "degF",
            model_e, params_e_r)
    gen_g_b = MonthlyBillingConsumptionGenerator("natural_gas", "therm", "degF",
            model_g, params_g_b)
    gen_g_r = MonthlyBillingConsumptionGenerator("natural_gas", "therm", "degF",
            model_g, params_g_r)

    # time periods
    period = Period(datetime(2011,1,1,tzinfo=pytz.utc), datetime(2015,1,1,tzinfo=pytz.utc))
    datetimes = generate_monthly_billing_datetimes(period, dist=randint(30,31))

    # consumption data
    cd_e_b = gen_e_b.generate(weather_source, datetimes, daily_noise_dist=None)
    cd_e_r = gen_e_r.generate(weather_source, datetimes, daily_noise_dist=None)
    cd_g_b = gen_g_b.generate(weather_source, datetimes, daily_noise_dist=None)
    cd_g_r = gen_g_r.generate(weather_source, datetimes, daily_noise_dist=None)

    # periods
    periods = cd_e_b.periods()
github openeemeter / eemeter / eemeter / generator.py View on Github external
baseline_params = model.param_type([param.rvs() for param in param_dists.to_list()])
        reporting_params = model.param_type([bl_param + param_delta.rvs()
            for bl_param, param_delta in zip(baseline_params.to_list(), param_delta_dists.to_list())])

        annualized_usage_meter = AnnualizedUsageMeter(temperature_unit_name,
                model)
        baseline_annualized_usage = annualized_usage_meter.evaluate_raw(
                model_params=baseline_params,
                weather_normal_source=weather_normal_source)["annualized_usage"]
        reporting_annualized_usage = annualized_usage_meter.evaluate_raw(
                model_params=reporting_params,
                weather_normal_source=weather_normal_source)["annualized_usage"]
        estimated_annualized_savings = baseline_annualized_usage - \
                reporting_annualized_usage

        baseline_generator = MonthlyBillingConsumptionGenerator(fuel_type,
                consumption_unit_name, temperature_unit_name, model,
                baseline_params)
        reporting_generator = MonthlyBillingConsumptionGenerator(fuel_type,
                consumption_unit_name, temperature_unit_name, model,
                reporting_params)

        datetimes = generate_monthly_billing_datetimes(period, dist=None)

        baseline_consumption_data = baseline_generator.generate(
                weather_source, datetimes, daily_noise_dist=noise)
        reporting_consumption_data = reporting_generator.generate(
                weather_source, datetimes, daily_noise_dist=noise)

        baseline_data = baseline_consumption_data.data
        reporting_data = reporting_consumption_data.data
        periods = baseline_consumption_data.periods()