Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
number_of_samples = 3
number_of_replicas = 5
# Create an encoder and decoder for the gauss app
encoder = uq.encoders.GenericEncoder(template_fname='tests/gauss/gauss.template',
target_filename='gauss_in.json')
decoder = GaussDecoder(target_filename=params['out_file']['default'])
my_campaign.add_app(name="gauss",
params=params,
encoder=encoder,
decoder=decoder
)
# Create a collation element for this campaign
collater = uq.collate.AggregateSamples(average=False)
my_campaign.set_collater(collater)
# Make a random sampler
vary = {
"mu": cp.Uniform(1.0, 100.0),
}
sampler1 = uq.sampling.RandomSampler(vary=vary)
# Set the campaign to use this sampler
my_campaign.set_sampler(sampler1)
# Draw samples
my_campaign.draw_samples(num_samples=number_of_samples,
replicas=number_of_replicas)
# TODO: Assert no. samples in db = number_of_samples*number_of_replicas
my_campaign = uq.Campaign(state_filename="test_input/test_cannonsim.json")
# Specify which parameters can vary, and their (prior) distributions.
my_campaign.vary_param("angle", dist=uq.distributions.uniform(0.0, 1.0))
my_campaign.vary_param("velocity", dist=uq.distributions.normal(10.0, 1.0))
my_campaign.vary_param("mass", dist=uq.distributions.custom_histogram("test_input/mass_distribution.csv"))
# Apply the randomSampler UQP, generating 15 runs
uq.uqp.sampling.random_sampler(my_campaign, num_samples=15)
# Execute and analyse
my_campaign.populate_runs_dir()
my_campaign.apply_for_each_run(uq.execute_local)
# Aggregate results from all runs
uq.collate.aggregate_samples(my_campaign)
# Apply ensemble bootstrap UQP
stats = uq.uqp.analysis.BasicStats(my_campaign)
results, output_file = stats.run_analysis()
# Output
print(my_campaign)
my_campaign.save_state("out_cannonsim.json")
"velocity": {
"type": "float",
"min": 0.0,
"max": 1000.0,
"default": 10.0}}
# Create an encoder and decoder for the cannonsim app
encoder = uq.encoders.GenericEncoder(
template_fname='tests/cannonsim/test_input/cannonsim.template',
delimiter='#',
target_filename='in.cannon')
output_cols = ['Dist', 'lastvx', 'lastvy']
decoder = uq.decoders.SimpleCSV(
target_filename='output.csv', output_columns=output_cols, header=0)
# Create a collation element for this campaign
collater = uq.collate.AggregateByVariables(average=False)
# Make a random sampler
sweep = {
"angle": [0.1, 0.2, 0.3],
"height": [2.0, 10.0],
"velocity": [10.0, 10.1, 10.2]
}
sampler = uq.sampling.BasicSweep(sweep=sweep)
my_campaign = uq.Campaign(name='aggregate_by_var', work_dir=tmpdir, db_location='sqlite:///')
my_campaign.add_app(name="cannon_test",
params=params,
encoder=encoder,
decoder=decoder,
collater=collater)
my_campaign.set_app("cannon_test")
sampler = uq.sampling.BasicSweep(sweep=sweep)
"""
__license__ = "LGPL"
my_campaign = uq.Campaign(state_filename="test_input/test_gauss.json")
my_campaign.vary_param("mu", dist=uq.distributions.uniform(1.0, 100.0))
uq.uqp.sampling.random_sampler(my_campaign, num_samples=2)
uq.uqp.sampling.add_replicas(my_campaign, replicates=5)
my_campaign.populate_runs_dir()
my_campaign.apply_for_each_run(uq.execute_local)
# Aggregate results from all runs (averaging values for each run)
uq.collate.aggregate_samples(my_campaign, average=True)
# Apply ensemble bootstrap UQP
ensemble_boot = uq.uqp.analysis.EnsembleBoot(my_campaign)
results, output_file = ensemble_boot.run_analysis()
print(my_campaign)
my_campaign.save_state("out_gauss.json")
decoder = uq.decoders.SimpleCSV(
target_filename='output.csv', output_columns=[
'Dist', 'lastvx', 'lastvy'], header=0)
# Add the cannonsim app
my_campaign.add_app(name="cannonsim",
params=params,
encoder=encoder,
decoder=decoder)
# Set the active app to be cannonsim (this is redundant when only one app
# has been added)
my_campaign.set_app("cannonsim")
# Create a collation element for this campaign
collater = uq.collate.AggregateSamples(average=False)
my_campaign.set_collater(collater)
# Make a sweep sampler
sweep = {
"angle": [0.1, 0.2, 0.3],
"height": [2.0, 10.0],
"velocity": [10.0, 10.1, 10.2]
}
sampler1 = uq.sampling.BasicSweep(sweep=sweep)
print("Serialized sampler:", sampler1.serialize())
# Set the campaign to use this sampler
my_campaign.set_sampler(sampler1)
# Draw first 5 samples
# "Nh": cp.DiscreteUniform(10, 20),
# "extent": cp.Uniform(1000, 2000),
"seed": cp.Uniform(1, 2000),
}
output_columns = ['cfrac', 'lwp', 'rwp', 'zb', 'zi', 'prec', 'wq', 'wtheta', 'we', 'walltime']
my_sampler = uq.sampling.SCSampler(vary=vary, polynomial_order=2,
quadrature_rule="C")
my_campaign = uq.Campaign(name='dales', work_dir=tmpdir, db_location='sqlite:///')
encoder = JinjaEncoder(template_fname='tests/jinjaencoder/namoptions.template',
target_filename='namoptions.001')
decoder = uq.decoders.SimpleCSV(
target_filename='results.csv',
output_columns=output_columns,
header=0)
collater = uq.collate.AggregateSamples(average=False)
my_campaign.add_app(name="dales",
params=params,
encoder=encoder,
decoder=decoder,
collater=collater)
my_campaign.verify_all_runs = False # to prevent errors on integer quantities
my_campaign.set_sampler(my_sampler)
my_campaign.draw_samples()
my_campaign.populate_runs_dir()
delimiter='$',
target_filename='cooling_in.json')
decoder = uq.decoders.SimpleCSV(target_filename="output.csv",
output_columns=["te", "ti"],
header=0)
# Add the app (automatically set as current app)
my_campaign.add_app(name="cooling",
params=params,
encoder=encoder,
decoder=decoder
)
# Create a collation element for this campaign
collater = uq.collate.AggregateSamples(average=False)
my_campaign.set_collater(collater)
# Create the sampler
vary = {
"kappa": cp.Uniform(0.025, 0.075),
"t_env": cp.Uniform(15, 25)
}
my_sampler = uq.sampling.PCESampler(vary=vary,
polynomial_order=3)
# Associate the sampler with the campaign
my_campaign.set_sampler(my_sampler)
# Will draw all (of the finite set of samples)
my_campaign.draw_samples()
"default": "output.csv"
}
}
# 3. Wrap Application
# - Define a new application (we'll call it 'gauss'), and the encoding/decoding elements it needs
# - Also requires a collation element - his will be responsible for aggregating the results
encoder = uq.encoders.GenericEncoder(template_fname=template,
target_filename=input_filename)
decoder = uq.decoders.SimpleCSV(
target_filename=out_file,
output_columns=['Step', 'Value'],
header=0)
collater = uq.collate.AggregateSamples(average=True)
my_campaign.add_app(name="gauss",
params=params,
encoder=encoder,
decoder=decoder,
collater=collater
)
# 4. Specify Sampler
# - vary the `mu` parameter only
vary = {
"mu": cp.Uniform(1.0, 100.0),
}
my_sampler = uq.sampling.RandomSampler(vary=vary)
"kappa": {"type": "float", "min": 0.0, "max": 0.1, "default": 0.025},
"t_env": {"type": "float", "min": 0.0, "max": 40.0, "default": 15.0},
"out_file": {"type": "string", "default": "output.csv"}
}
# Create an encoder, decoder and collater for PCE test app
encoder = uq.encoders.GenericEncoder(
template_fname='cooling.template',
delimiter='$',
target_filename='cooling_in.json')
decoder = uq.decoders.SimpleCSV(target_filename="output.csv",
output_columns=["te"],
header=0)
collater = uq.collate.AggregateSamples(average=False)
# Add the app (automatically set as current app)
my_campaign.add_app(name="cooling",
params=params,
encoder=encoder,
decoder=decoder,
collater=collater)
# Create the sampler
vary = {
"kappa": cp.Uniform(0.025, 0.075),
"t_env": cp.Uniform(15, 25)
}
my_sampler = uq.sampling.quasirandom.LHCSampler(vary)
# Associate the sampler with the campaign
"temp_init": {"type": "float", "min": 0.0, "max": 100.0, "default": 95.0},
"kappa": {"type": "float", "min": 0.0, "max": 0.1, "default": 0.025},
"t_env": {"type": "float", "min": 0.0, "max": 40.0, "default": 15.0},
"out_file": {"type": "string", "default": "output.csv"}
}
# Create an encoder, decoder and collater for PCE test app
encoder = uq.encoders.GenericEncoder(
template_fname='cooling.template',
delimiter='$',
target_filename='cooling_in.json')
decoder = uq.decoders.SimpleCSV(target_filename="output.csv",
output_columns=["te"],
header=0)
collater = uq.collate.AggregateSamples(average=False)
# Add the app (automatically set as current app)
my_campaign.add_app(name="cooling",
params=params,
encoder=encoder,
decoder=decoder,
collater=collater)
# Create the sampler
vary = {
"kappa": cp.Uniform(0.025, 0.075),
"t_env": cp.Uniform(15, 25)
}
my_sampler = uq.sampling.PCESampler(vary=vary,
polynomial_order=3)