How to use earthpy - 10 common examples

To help you get started, we’ve selected a few earthpy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github earthlab / earthpy / earthpy / data / get_path.py View on Github external
def get_path(dataset):
    """ Construct a file path to a dataset.

    Parameters
    ----------
    dataset: string
        Name of a dataset to access (e.g., "epsg.json", or "RGB.byte.tif")

    Returns
    -------
    A file path (string) to the dataset
    """
    earthpy_path = os.path.split(earthpy.__file__)[0]
    data_dir = os.path.join(earthpy_path, "data")
    data_files = os.listdir(data_dir)
    if dataset not in data_files:
        raise KeyError(dataset + " not found in earthpy example data.")
    return os.path.join(data_dir, dataset)
github earthlab / earthpy / earthpy / io.py View on Github external
----------
    dataset: string
        Name of a dataset to access (e.g., "epsg.json", or "RGB.byte.tif")

    Returns
    -------
    A file path (string) to the dataset

    Example
    -------

        >>> import earthpy.io as eio
        >>> eio.path_to_example('rmnp-dem.tif')
        '...rmnp-dem.tif'
    """
    earthpy_path = os.path.split(earthpy.__file__)[0]
    data_dir = os.path.join(earthpy_path, "example-data")
    data_files = os.listdir(data_dir)
    if dataset not in data_files:
        raise KeyError(dataset + " not found in earthpy example data.")
    return os.path.join(data_dir, dataset)
github earthlab / earthpy / examples / calculate_classify_ndvi.py View on Github external
# Landsat 8 red band is band 4 at [3]
# Landsat 8 near-infrared band is band 5 at [4]
ndvi = es.normalized_diff(arr_st[4], arr_st[3])


###############################################################################
# Plot NDVI With Colorbar Legend of Continuous Values
# ----------------------------------------------------

# You can plot NDVI with a colorbar legend of continuous values using the
# ``plot_bands`` function from the ``earthpy.plot`` module.

titles = ["Landsat 8 - Normalized Difference Vegetation Index (NDVI)"]

# Turn off bytescale scaling due to float values for NDVI
ep.plot_bands(
    ndvi, cmap="RdYlGn", cols=1, title=titles, scale=False, vmin=-1, vmax=1
)


###############################################################################
# Classify NDVI
# -------------

# Next, you can classify the NDVI to categorize the results into useful classes.
# Values under 0 will be classified together as no vegetation. Additional classes
# will be created for bare area # and low, moderate, and high vegetation areas.

# Create classes and apply to NDVI results
ndvi_class_bins = [-np.inf, 0, 0.1, 0.25, 0.4, np.inf]
ndvi_landsat_class = np.digitize(ndvi, ndvi_class_bins)
github earthlab / earthpy / examples / plot_dem_hillshade.py View on Github external
# ---------------
# To begin, open your DEM layer as a numpy array using Rasterio. Below you set all
# terrain values < 0 to ``nan``. Next, plot the data using ``ep.plot_bands()``.

# Set the home directory and get the data for the exercise
os.chdir(os.path.join(et.io.HOME, "earth-analytics"))
dtm = "data/vignette-elevation/pre_DTM.tif"

# Open the DEM with Rasterio
with rio.open(dtm) as src:
    elevation = src.read(1)
    # Set masked values to np.nan
    elevation[elevation < 0] = np.nan

# Plot the data
ep.plot_bands(
    elevation,
    scale=False,
    cmap="gist_earth",
    title="DTM Without Hillshade",
    figsize=(10, 6),
)
plt.show()

####################################################################################
# Create the Hillshade
# --------------------
# Once the DEM is read in, call ``es.hillshade()`` to create the hillshade.

# Create and plot the hillshade with earthpy
hillshade = es.hillshade(elevation)
github earthlab / earthpy / examples / plot_stack_masks.py View on Github external
# -----------------------------------------------
# Next, have a look at the data, it looks like there is a large cloud that you
# may want to mask out.

ep.plot_bands(arr_st)
plt.show()


###############################################################################
# Mask the Data
# -----------------------------------------------
# You can use the EarthPy ``mask()`` function to handle this cloud.
# To begin you need to have a layer that defines the pixels that
# you wish to mask. In this case, the ``landsat_qa`` layer will be used.

ep.plot_bands(
    landsat_qa,
    title="The Landsat QA Layer Comes with Landsat Data\n It can be used to remove clouds and shadows",
)
plt.show()


###############################################################################
# Plot The Masked Data
# ~~~~~~~~~~~~~~~~~~~~~
# Now apply the mask and plot the masked data. The mask applies to every band in your data.
# The mask values below are values documented in the Landsat 8 documentation that represent
# clouds and cloud shadows.

# Generate array of all possible cloud / shadow values
cloud_shadow = [328, 392, 840, 904, 1350]
cloud = [352, 368, 416, 432, 480, 864, 880, 928, 944, 992]
github earthlab / earthpy / examples / plot_bands_functionality.py View on Github external
# The list must contain the same number of strings as there are bands in the stack.

titles = ["Ultra Blue", "Blue", "Green", "Red", "NIR", "SWIR 1", "SWIR 2"]
# sphinx_gallery_thumbnail_number = 1
ep.plot_bands(array_stack, title=titles)
plt.show()

##################################################################################
# Plot One Band in a Stack
# ------------------------
#
# If you give ``ep.plot_bands()`` a one dimensional numpy array,
# it will only plot that single band. You can turn off the
# colorbar using the ``cbar`` parameter (``cbar=False``).

ep.plot_bands(array_stack[4], cbar=False)
plt.show()

##################################################################################
# Turn Off Scaling
# -----------------
#
# ``ep.plot_bands()`` scales the imagery to a 0-255 scale by default. This range
# of values makes it easier for matplotlib to plot the data. To turn off
# scaling, set the scale parameter to ``False``. Below you
# plot NDVI with scaling turned off in order for the proper range of values
# (-1 to 1) to be displayed. You can use the ``cmap=`` parameter to adjust
# the colormap for the plot

NDVI = es.normalized_diff(array_stack[4], array_stack[3])
ep.plot_bands(NDVI, scale=False, cmap="RdYlGn")
plt.show()
github earthlab / earthpy / examples / plot_bands_functionality.py View on Github external
)
landsat_path.sort()
array_stack, meta_data = es.stack(landsat_path, nodata=-9999)

###############################################################################
# Plot All Bands in a Stack
# --------------------------
#
# When you give ``ep.plot_bands()`` a three dimensional numpy array,
# it will plot all layers in the numpy array. You can create unique titles for
# each image by providing a list of titles using the ``title=`` parameter.
# The list must contain the same number of strings as there are bands in the stack.

titles = ["Ultra Blue", "Blue", "Green", "Red", "NIR", "SWIR 1", "SWIR 2"]
# sphinx_gallery_thumbnail_number = 1
ep.plot_bands(array_stack, title=titles)
plt.show()

##################################################################################
# Plot One Band in a Stack
# ------------------------
#
# If you give ``ep.plot_bands()`` a one dimensional numpy array,
# it will only plot that single band. You can turn off the
# colorbar using the ``cbar`` parameter (``cbar=False``).

ep.plot_bands(array_stack[4], cbar=False)
plt.show()

##################################################################################
# Turn Off Scaling
# -----------------
github earthlab / earthpy / examples / plot_bands_functionality.py View on Github external
ep.plot_bands(array_stack[4], cbar=False)
plt.show()

##################################################################################
# Turn Off Scaling
# -----------------
#
# ``ep.plot_bands()`` scales the imagery to a 0-255 scale by default. This range
# of values makes it easier for matplotlib to plot the data. To turn off
# scaling, set the scale parameter to ``False``. Below you
# plot NDVI with scaling turned off in order for the proper range of values
# (-1 to 1) to be displayed. You can use the ``cmap=`` parameter to adjust
# the colormap for the plot

NDVI = es.normalized_diff(array_stack[4], array_stack[3])
ep.plot_bands(NDVI, scale=False, cmap="RdYlGn")
plt.show()

##################################################################################
# Adjust the Number of Columns for a Multi Band Plot
# ---------------------------------------------------
#
# The number of columns used while plotting multiple bands can be changed in order
# to change the arrangement of the images overall.

ep.plot_bands(array_stack, cols=2)
plt.show()
github earthlab / earthpy / examples / plot_dem_hillshade.py View on Github external
plt.show()

####################################################################################
# Change the Azimuth of the Sun
# -------------------------------
# The angle that sun light hits the landscape, impacts the shadows and highlights
# created on the landscape. You can adjust the azimuth values to adjust angle of the
# highlights and shadows that are created in your output hillshade. Azimuth numbers can
# range from 0 to 360 degrees, where 0 is due North. The default value for azimuth
# in ``es.hillshade()`` is 30 degrees.

# Change the azimuth of the hillshade layer
hillshade_azimuth_210 = es.hillshade(elevation, azimuth=210)

# Plot the hillshade layer with the modified azimuth
ep.plot_bands(
    hillshade_azimuth_210,
    scale=False,
    cbar=False,
    title="Hillshade with Azimuth set to 210 Degrees",
    figsize=(10, 6),
)
plt.show()

####################################################################################
# Change the Angle Altitude of the Sun
# -------------------------------------
# Another variable you can adjust for hillshade is what angle of the sun.
# The ``angle_altitude`` parameter values range from 0 to 90. 90 represents the sun
# shining from directly above the scene. The default value for ``angle_altitude`` in
# ``es.hillshade()`` is 30 degrees.
github earthlab / earthpy / examples / plot_dem_hillshade.py View on Github external
scale=False,
    cmap="gist_earth",
    title="DTM Without Hillshade",
    figsize=(10, 6),
)
plt.show()

####################################################################################
# Create the Hillshade
# --------------------
# Once the DEM is read in, call ``es.hillshade()`` to create the hillshade.

# Create and plot the hillshade with earthpy
hillshade = es.hillshade(elevation)

ep.plot_bands(
    hillshade,
    scale=False,
    cbar=False,
    title="Hillshade made from DTM",
    figsize=(10, 6),
)
plt.show()

####################################################################################
# Change the Azimuth of the Sun
# -------------------------------
# The angle that sun light hits the landscape, impacts the shadows and highlights
# created on the landscape. You can adjust the azimuth values to adjust angle of the
# highlights and shadows that are created in your output hillshade. Azimuth numbers can
# range from 0 to 360 degrees, where 0 is due North. The default value for azimuth
# in ``es.hillshade()`` is 30 degrees.

earthpy

A set of helper functions to make working with spatial data in open source tools easier. This package is maintained by Earth Lab and was originally designed to support the earth analytics education program.

BSD-3-Clause
Latest version published 3 years ago

Package Health Score

60 / 100
Full package analysis

Similar packages