How to use the deskew.fastDeskew function in deskew

To help you get started, we’ve selected a few deskew examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github zeusees / HyperLPR / hyperlpr / finemapping.py View on Github external
rgb = cv2.copyMakeBorder(image_rgb,30,30,0,0,cv2.BORDER_REPLICATE)
    leftyA, rightyA = fitLine_ransac(np.array(line_lower),2)
    rows,cols = rgb.shape[:2]

    # rgb = cv2.line(rgb, (cols - 1, rightyA), (0, leftyA), (0, 0, 255), 1,cv2.LINE_AA)

    leftyB, rightyB = fitLine_ransac(np.array(line_upper),-4)

    rows,cols = rgb.shape[:2]

    # rgb = cv2.line(rgb, (cols - 1, rightyB), (0, leftyB), (0,255, 0), 1,cv2.LINE_AA)
    pts_map1  = np.float32([[cols - 1, rightyA], [0, leftyA],[cols - 1, rightyB], [0, leftyB]])
    pts_map2 = np.float32([[136,36],[0,36],[136,0],[0,0]])
    mat = cv2.getPerspectiveTransform(pts_map1,pts_map2)
    image = cv2.warpPerspective(rgb,mat,(136,36),flags=cv2.INTER_CUBIC)
    image,M= deskew.fastDeskew(image)


    return image
github zeusees / HyperLPR / hyperlpr / finemapping.py View on Github external
rgb = cv2.copyMakeBorder(image_rgb,30,30,0,0,cv2.BORDER_REPLICATE)
    leftyA, rightyA = fitLine_ransac(np.array(line_lower),3)
    rows,cols = rgb.shape[:2]

    # rgb = cv2.line(rgb, (cols - 1, rightyA), (0, leftyA), (0, 0, 255), 1,cv2.LINE_AA)

    leftyB, rightyB = fitLine_ransac(np.array(line_upper),-3)

    rows,cols = rgb.shape[:2]

    # rgb = cv2.line(rgb, (cols - 1, rightyB), (0, leftyB), (0,255, 0), 1,cv2.LINE_AA)
    pts_map1  = np.float32([[cols - 1, rightyA], [0, leftyA],[cols - 1, rightyB], [0, leftyB]])
    pts_map2 = np.float32([[136,36],[0,36],[136,0],[0,0]])
    mat = cv2.getPerspectiveTransform(pts_map1,pts_map2)
    image = cv2.warpPerspective(rgb,mat,(136,36),flags=cv2.INTER_CUBIC)
    image,M = deskew.fastDeskew(image)

    return image

deskew

Skew detection and correction in images containing text

MIT
Latest version published 11 months ago

Package Health Score

63 / 100
Full package analysis

Similar packages