How to use ddsp - 9 common examples

To help you get started, we’ve selected a few ddsp examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github acids-ircam / ddsp_pytorch / code / ddsp / effects.py View on Github external
# -*- coding: utf-8 -*-

import torch
import torch.nn as nn
from ddsp.synth import SynthModule
    
class Effects(SynthModule):
    """
    Generic class for effects
    """
    
    def __init__(self):
        super(Effects, self).__init__()
        self.apply(self.init_parameters)
    
    def n_parameters(self):
        """ Return number of parameters in the module """
        return 0

    def forward(self, z):
        z, conditions = z
        return z
github acids-ircam / ddsp_pytorch / code / ddsp / filters.py View on Github external
# -*- coding: utf-8 -*-

import torch
import torch.nn as nn
from modules import ResConv1d
from ddsp.synth import SynthModule
    
class Filter(nn.Module, SynthModule):
    """
    Generic class for trainable signal filters.
    """
    
    def __init__(self):
        super(Filter, self).__init__()
        self.apply(self.init_parameters)
    
    def init_parameters(self, m):
        pass

    def forward(self, z):
        z, conditions = z
        return z

"""
github acids-ircam / ddsp_pytorch / code / ddsp / oscillators.py View on Github external
# -*- coding: utf-8 -*-

import torch
import torch.nn as nn
import numpy as np
from ddsp.synth import SynthModule
    
class Oscillator(SynthModule):
    
    def __init__(self):
        super(Oscillator, self).__init__()
        self.apply(self.init_parameters)
    
    def init_parameters(self, m):
        pass

    def forward(self, z):
        pass
    
class HarmonicOscillators(Oscillator):
    
    def __init__(self, n_partial, sample_rate, block_size):
        super(Oscillator, self).__init__()
        self.apply(self.init_parameters)
github acids-ircam / ddsp_pytorch / code / ddsp / generators.py View on Github external
# -*- coding: utf-8 -*-

import torch
import torch.nn as nn
from ddsp.synth import SynthModule
    
class Generator(SynthModule):
    """
    Generic class for trainable signal generators.
    """
    
    def __init__(self):
        super(Generator, self).__init__()
        self.apply(self.init_parameters)
    
    def init_parameters(self, m):
        pass

    def forward(self, z):
        z, conditions = z
        return z

class FilteredNoise(Generator):
github acids-ircam / ddsp_pytorch / code / data.py View on Github external
def construct_extractors(self, args):
        self.extractors = {}
        self.extractors['f0'] = FundamentalFrequency(args.sr, args.block_size, args.sequence_size).float()
        self.extractors['loudness'] = Loudness(args.block_size, args.kernel_size).float()
github acids-ircam / ddsp_pytorch / code / data.py View on Github external
def construct_extractors(self, args):
        self.extractors = {}
        self.extractors['f0'] = FundamentalFrequency(args.sr, args.block_size, args.sequence_size).float()
        self.extractors['loudness'] = Loudness(args.block_size, args.kernel_size).float()
github acids-ircam / ddsp_pytorch / code / data.py View on Github external
def __init__(self, datadir, args, transform=None, splits=[.8, .1, .1], shuffle_files=True, train='train'):
        self.args = args
        # Metadata and raw
        self.data_files = []
        # Spectral transforms
        self.features_files = []
        # Construct set of extractors
        self.construct_extractors(args)
        # Construct the FFT extractor
        self.multi_fft = MultiscaleFFT(args.scales)
        # Retrieve list of files
        tmp_files = sorted(glob.glob(datadir + '/raw/*.wav'))
        self.data_files.extend(tmp_files)
        if (not os.path.exists(datadir + '/data') or len(glob.glob(datadir + '/data/*.npy')) == 0):
            os.makedirs(datadir + '/data')
            self.preprocess_dataset(datadir)
        feat_files = sorted(glob.glob(datadir + '/data/*.npy'))
        self.features_files.extend(feat_files)
        # Analyze dataset
        self.analyze_dataset()
        # Create splits
        self.create_splits(splits, shuffle_files)
        # Compute mean and std of dataset
        self.compute_normalization()
        # Now we can create the normalization / augmentation transform
        self.transform = transform
github acids-ircam / ddsp_pytorch / code / train.py View on Github external
plot_batch_detailed(fixed_batch)
# Set latent dims to output dims
if (args.latent_dims == 0):
    args.latent_dims = args.output_size

"""
###################
Model definition section
###################
"""
print('[Creating model]')
if (args.model in ['ae', 'vae', 'wae', 'flow']):
    # Construct encoding and decoding architectures
    encoder, decoder = construct_architecture(args)
    # Construct synthesizer
    synth = construct_synth(args)
    # Finally construct the full model (first only AE)
    model = DDSSynth(encoder, decoder, synth, args)
else:
    raise Exception('Unknown model ' + args.model)
# Send model to device
model = model.to(args.device)

"""
###################
Optimizer section
###################
"""
# Optimizer model
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# Learning rate scheduler
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=20, verbose=True, threshold=1e-7)
github acids-ircam / ddsp_pytorch / code / train.py View on Github external
raise Exception('Unknown model ' + args.model)
# Send model to device
model = model.to(args.device)

"""
###################
Optimizer section
###################
"""
# Optimizer model
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# Learning rate scheduler
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=20, verbose=True, threshold=1e-7)
# Loss
if (args.loss == 'msstft'):
    loss = MSSTFTLoss(args.scales)
else:
    raise Exception('Unknown loss ' + args.loss)

"""
###################
Training section
###################
"""
#% Monitoring quantities
losses = torch.zeros(args.epochs, 3)
best_loss = np.inf
early = 0
print('[Starting training]')
for i in range(args.epochs):
    # Set warm-up values
    args.beta = args.beta_factor * (float(i) / float(max(args.warm_latent, i)))

ddsp

Differentiable Digital Signal Processing

Apache-2.0
Latest version published 1 year ago

Package Health Score

57 / 100
Full package analysis

Similar packages