Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self, k=5, max_iter=100, learning_rate=0.001, gamma=0.9, lamda=0.001, name="MCF",
trainable=True, verbose=False, init_params={}, seed=None):
Recommender.__init__(self, name=name, trainable=trainable, verbose=verbose)
self.k = k
self.init_params = init_params
self.max_iter = max_iter
self.learning_rate = learning_rate
self.gamma = gamma
self.lamda = lamda
self.ll = np.full(max_iter, 0)
self.eps = 0.000000001
self.U = self.init_params.get('U') # matrix of user factors
self.V = self.init_params.get('V') # matrix of item factors
self.Z = self.init_params.get('Z') # matrix of Also-Viewed item factors
self.seed = seed
def __init__(self, k=10, max_iter=20, learning_rate=0.01, lambda_reg=0.02, use_bias=True, early_stop=False,
verbose=False):
Recommender.__init__(self, name='MF', verbose=verbose)
self.k = k
self.max_iter = max_iter
self.learning_rate = learning_rate
self.lambda_reg = lambda_reg
self.use_bias = use_bias
self.early_stop = early_stop
self.fitted = False
def __init__(self, k=5, max_iter=100, learning_rate=0.001, gamma=0.9, lamda=0.001, name="PMF", variant='non_linear',
trainable=True, verbose=False, init_params={}, seed=None):
Recommender.__init__(self, name=name, trainable=trainable, verbose=verbose)
self.k = k
self.init_params = init_params
self.max_iter = max_iter
self.learning_rate = learning_rate
self.gamma = gamma
self.lamda = lamda
self.variant = variant
self.ll = np.full(max_iter, 0)
self.eps = 0.000000001
self.U = self.init_params.get('U') # matrix of user factors
self.V = self.init_params.get('V') # matrix of item factors
self.seed = seed
def __init__(self, k=20, max_iter=100, learning_rate=0.05, lamda=0.001, batch_size=1000, name="coe", trainable=True,
verbose=False, init_params=None):
Recommender.__init__(self, name=name, trainable=trainable, verbose=verbose)
self.k = k
self.init_params = init_params
self.max_iter = max_iter
self.name = name
self.learning_rate = learning_rate
self.lamda = lamda
self.batch_size = batch_size
self.U = init_params['U'] # matrix of user factors
self.V = init_params['V'] # matrix of item factors
def __init__(self, name="SoRec", k=5, max_iter=100, learning_rate=0.001, lamda_c=10, lamda=0.001, gamma=0.9,
weight_link = True, trainable=True, verbose=False, init_params={}, seed=None):
Recommender.__init__(self, name=name, trainable=trainable, verbose=verbose)
self.k = k
self.init_params = init_params
self.max_iter = max_iter
self.learning_rate = learning_rate
self.lamda_c = lamda_c
self.lamda = lamda
self.gamma = gamma
self.weight_link = weight_link
self.ll = np.full(max_iter, 0)
self.eps = 0.000000001
self.U = self.init_params.get('U') # matrix of user factors
self.V = self.init_params.get('V') # matrix of item factors
self.Z = self.init_params.get('Z') # matrix of social network factors
self.seed = seed
def __init__(self, k=5, max_iter=100, name="Skmeans", trainable=True, tol=1e-6, verbose=True, init_par=None):
Recommender.__init__(self, name=name, trainable=trainable, verbose=verbose)
self.k = k
self.init_par = init_par
self.max_iter = max_iter
self.tol = tol
self.verbose = verbose
self.centroids = None # matrix of cluster centroids
def __init__(self, k=100, max_iter=100, variant='c2pf', name=None, trainable=True, verbose=False,
init_params={'G_s': None, 'G_r': None, 'L_s': None, 'L_r': None, 'L2_s': None, 'L2_r': None,
'L3_s': None, 'L3_r': None}):
if name is None:
Recommender.__init__(self, name=variant.upper(), trainable=trainable, verbose=verbose)
else:
Recommender.__init__(self, name=name, trainable=trainable, verbose=verbose)
self.k = k
self.init_params = init_params
self.max_iter = max_iter
self.ll = np.full(max_iter, 0)
self.eps = 0.000000001
self.Theta = None # user factors
self.Beta = None # item factors
self.Xi = None # context factors Xi multiplied by context effects Kappa
# self.aux_info = aux_info # item-context matrix in the triplet sparse format: (row_id, col_id, value)
self.variant = variant