Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self, json_='webapi', *args, **kwargs):
if json_ == 'save':
self.add(SchemaNode(typ=Sequence(), children=[SchemaNode(EnvProp())], name='variables'))
super(GridVectorPropSchema, self).__init__(*args, **kwargs)
def __init__(self):
self.registry = {
colander.Mapping: _MappingNodeProperty,
colander.Sequence: _SequenceNodeProperty,
colander.Tuple: _TupleNodeProperty,
colander.SchemaType: _LeafNodeProperty,
}
appstruct = appstruct.strip()
return appstruct
class _FieldStorage(SchemaType):
def deserialize(self, node, cstruct):
if cstruct in (null, None, b""):
return null
# weak attempt at duck-typing
if not hasattr(cstruct, "file"):
raise Invalid(node, "%s is not a FieldStorage instance" % cstruct)
return cstruct
_sequence_of_strings = SchemaNode(
Sequence(), SchemaNode(_PossiblyEmptyString())
)
class Widget(object):
"""
A widget is the building block for rendering logic. The
:class:`deform.widget.Widget` class is never instantiated
directly: it is the abstract class from which all other widget
types within :mod:`deform.widget` derive. It should likely also
be subclassed by application-developer-defined widgets.
A widget instance is attached to a field during normal operation.
A widget is not meant to carry any state. Instead, widget
implementations should use the ``field`` object passed to them
during :meth:`deform.widget.Widget.serialize` and
:meth:`deform.widget.Widget.deserialize` as a scratchpad for state
InfotypeKeyScheam = LarkSchemaNode(LarkMappingSchema())
node(InfotypeKeyScheam, lark_string, name='infotype')
node(InfotypeKeyScheam, name_ref_type, name='key')
NameSchema = LarkSchemaNode(LarkMappingSchema())
node(NameSchema, name_ref_type, name='name')
class NamesSchemaNode(LarkSchemaNode):
def signature_from_cstruct(self, cstruct, redis_args, redis_kwargs):
return (cstruct['name'], {})
NamesSchema = NamesSchemaNode(LarkMappingSchema())
NamesSchema.add(LarkSchemaNode(colander.Sequence(accept_scalar=True), LarkSchemaNode(name_ref_type), name='name'))
PatternSchema = LarkSchemaNode(LarkMappingSchema())
node(PatternSchema, name_ref_type, name='pattern', missing='*')
KeySchema = LarkSchemaNode(LarkMappingSchema())
node(KeySchema, name_ref_type, name='key')
class KeySchemaNode(LarkSchemaNode):
def signature_from_cstruct(self, cstruct, redis_args, redis_kwargs):
return (cstruct['key'], {})
KeysSchema = KeySchemaNode(LarkMappingSchema())
'phase1',
'phase1_selected',
'phase2',
'phase2_selected',
'glycosidase',
'mass_filter',
'gut'])
scenario.add(colander.SchemaNode(colander.String(),
name='type',
validator=transformation_types))
# TODO add validator for steps, but what are valid options for steps?
scenario.add(colander.SchemaNode(colander.String(),
name='steps'))
schema.add(colander.SchemaNode(colander.Sequence(),
scenario,
validator=colander.Length(1),
name='scenario'))
appstruct['value'].tolist())
return super(DatetimeValue2dArray, self).serialize(node, series)
def deserialize(self, node, cstruct):
if cstruct is null:
return null
items = (super(DatetimeValue2dArray, self)
.deserialize(node, cstruct, accept_scalar=False))
timeseries = np.array(items, dtype=gnome.basic_types.datetime_value_2d)
return timeseries # validator requires numpy array
class DatetimeValue1dArray(Sequence):
"""
A subclass of :class:`colander.Sequence` that converts itself to a numpy
array using :class:`gnome.basic_types.datetime_value_2d` as the data type.
"""
def serialize(self, node, appstruct):
if appstruct is null: # colander.null
return null
appstruct = zip(appstruct['time'].astype(object), appstruct['value'])
return super(DatetimeValue1dArray, self).serialize(node, appstruct)
def deserialize(self, node, cstruct):
if cstruct is null:
return null
nvr = colander.SchemaNode(
colander.String(),
location="querystring",
missing=None,
)
packages = Packages(
colander.Sequence(accept_scalar=True),
location="querystring",
missing=None,
preparer=[util.splitter],
)
releases = Releases(
colander.Sequence(accept_scalar=True),
location="querystring",
missing=None,
preparer=[util.splitter],
)
updates = Updates(
colander.Sequence(accept_scalar=True),
location="querystring",
missing=None,
preparer=[util.splitter],
)
class UpdateRequestSchema(CSRFProtectedSchema, colander.MappingSchema):
"""An API schema for bodhi.server.services.updates.set_request()."""
def _get_node_principals(self, perm):
principal = colander.SchemaNode(colander.String())
return colander.SchemaNode(
colander.Sequence(), principal, name=perm, missing=colander.drop
)
description="A section describing the runtime plugin name and version for this instance."
)
startup = Prepares(
title="Startup tasks",
description="A list of plugins and parameters to run on instance startup.",
default=[],
missing=[]
)
placement = PlacementPlugin(
title="Placement information",
description="A section that provides hints to Paasmaker about where to place your application.",
default=PlacementPlugin.default(),
missing=PlacementPlugin.default()
)
hostnames = colander.SchemaNode(
colander.Sequence(),
colander.SchemaNode(colander.String()),
title="Hostnames",
description="A set of public hostnames that this instance will have if it is the current version of the application.",
default=[],
missing=[]
)
exclusive = colander.SchemaNode(
colander.Boolean(),
title="Version Exclusive",
description="If set to true, only one version of this instance type will run at a time. This is good for background workers that you don't want overlapping.",
default=False,
missing=False)
standalone = colander.SchemaNode(
colander.Boolean(),
title="Standalone",
description="If true, this instance doesn't require a TCP port. Affects the startup of the application.",
node(CursorMatchCountSchema, int_type, name='cursor')
node(CursorMatchCountSchema, name_ref_type, name='match')
node(CursorMatchCountSchema, int_type, name='count')
NameCursorMatchCountSchema = LarkSchemaNode(LarkMappingSchema())
node(NameCursorMatchCountSchema, name_ref_type, name='name')
node(NameCursorMatchCountSchema, int_type, name='cursor')
node(NameCursorMatchCountSchema, lark_string, name='match')
node(NameCursorMatchCountSchema, int_type, name='count')
BitOpSchema = LarkSchemaNode(LarkMappingSchema())
node(BitOpSchema, lark_string, name='operation')
node(BitOpSchema, name_ref_type, name='destkey')
BitOpSchema.add(LarkSchemaNode(colander.Sequence(), LarkSchemaNode(name_ref_type), name='key'))
NameTtlValueSchema = LarkSchemaNode(LarkMappingSchema())
node(NameTtlValueSchema, name_ref_type, name='name')
node(NameTtlValueSchema, int_type, name='ttl')
node(NameTtlValueSchema, value_type, name='key')
NameNumberSchema = LarkSchemaNode(LarkMappingSchema())
node(NameNumberSchema, name_ref_type, name='name')
node(NameNumberSchema, lark_string, name='number', missing=None)
NameMinMaxSchema = LarkSchemaNode(LarkMappingSchema())
node(NameMinMaxSchema, name_ref_type, name='name')
node(NameMinMaxSchema, lark_string, name='min')