Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def load_tsv_to_net(net, file_buffer, filename=None):
lines = file_buffer.getvalue().split('\n')
num_labels = categories.check_categories(lines)
row_arr = list(range(num_labels['row']))
col_arr = list(range(num_labels['col']))
# use header if there are col categories
if len(col_arr) > 1:
df = pd.read_table(file_buffer, index_col=row_arr,
header=col_arr)
else:
df = pd.read_table(file_buffer, index_col=row_arr)
df = proc_df_labels.main(df)
net.df_to_dat(df, True)
net.dat['filename'] = filename
# cat_values = net.meta_col.loc[inst_nodes, cat_title].apply(lambda x: cat_title + ': ' + x).values.tolist()
if net.is_downsampled:
if hasattr(net, 'meta_ds_col'):
# print(inst_nodes)
cat_values = net.meta_ds_col.loc[inst_nodes, cat_title].apply(lambda x: cat_title + ': ' + x).values.tolist()
else:
cat_values = net.meta_col.loc[inst_nodes, cat_title].apply(lambda x: cat_title + ': ' + x).values.tolist()
# detault with no downsampling
else:
cat_values = net.meta_col.loc[inst_nodes, cat_title].apply(lambda x: cat_title + ': ' + x).values.tolist()
net.dat['node_info'][axis][cat_name] = cat_values
categories.dict_cat(net, define_cat_colors=define_cat_colors)
}
},
{
"title": "Second Category",
"cats": {
"something": [
"PDK4"
]
}
}
]
'''
for inst_data in cat_data:
categories.add_cats(self, axis, inst_data)
linkage_type=linkage_type)
else:
dendro = False
node_info['clust'] = node_info['ini']
# sorting
if run_rank is True:
node_info['rank'] = sort_rank_nodes(net, axis, 'sum')
node_info['rankvar'] = sort_rank_nodes(net, axis, 'var')
else:
node_info['rank'] = node_info['ini']
node_info['rankvar'] = node_info['ini']
##################################
if ignore_cat is False:
categories.calc_cat_clust_order(net, axis)
if calc_cat_pval is True:
cat_pval.main(net)
# make the visualization json
make_viz.viz_json(net, dendro, links)
return dm