How to use the cleverhans.utils.set_log_level function in cleverhans

To help you get started, we’ve selected a few cleverhans examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github deepgenerativeclassifier / DeepBayes / test_attacks / attack.py View on Github external
def test_attacks(data_name, model_name, attack_method, eps, batch_size=100, 
                 targeted=False, save=False):

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    # Create TF session
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    print("Created TensorFlow session.")
    set_log_level(logging.DEBUG)

    if data_name == 'mnist':
        from cleverhans.utils_mnist import data_mnist
        X_train, Y_train, X_test, Y_test = data_mnist(train_start=0, train_end=60000,
                                                      test_start=0, test_end=10000)
    if data_name in ['cifar10', 'plane_frog']:
        from import_data_cifar10 import load_data_cifar10
        if data_name == 'plane_frog':
            labels = [0, 6]
        else:
            labels = None
        data_path = '../cifar_data/'
        X_train, X_test, Y_train, Y_test = load_data_cifar10(data_path, labels=labels, conv=True)
    
    source_samples, img_rows, img_cols, channels = X_test.shape
    nb_classes = Y_test.shape[1]
github kabkabm / defensegan / blackbox.py View on Github external
train_end: index of last training set example
        test_start: index of first test set example
        test_end: index of last test set example
        defense_type: Type of defense against blackbox attacks
    
    Returns:
        a dictionary with:
             * black-box model accuracy on test set
             * substitute model accuracy on test set
             * black-box model accuracy on adversarial examples transferred
               from the substitute model
    """
    FLAGS = flags.FLAGS

    # Set logging level to see debug information.
    set_log_level(logging.WARNING)

    # Dictionary used to keep track and return key accuracies.
    accuracies = {}

    # Create TF session.
    adv_training = False
    if defense_type:
        if defense_type == 'defense_gan' and gan:
            sess = gan.sess
            gan_defense_flag = True
        else:
            gan_defense_flag = False
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            sess = tf.Session(config=config)
        if 'adv_tr' in defense_type:
github tensorflow / cleverhans / cleverhans_tutorials / mnist_tutorial_tf.py View on Github external
to verify that performance is adequate
  :param backprop_through_attack: If True, backprop through adversarial
                                  example construction process during
                                  adversarial training.
  :param label_smoothing: float, amount of label smoothing for cross entropy
  :return: an AccuracyReport object
  """

  # Object used to keep track of (and return) key accuracies
  report = AccuracyReport()

  # Set TF random seed to improve reproducibility
  tf.set_random_seed(1234)

  # Set logging level to see debug information
  set_log_level(logging.DEBUG)

  # Create TF session
  if num_threads:
    config_args = dict(intra_op_parallelism_threads=1)
  else:
    config_args = {}
  sess = tf.Session(config=tf.ConfigProto(**config_args))

  # Get MNIST data
  mnist = MNIST(train_start=train_start, train_end=train_end,
                test_start=test_start, test_end=test_end)
  x_train, y_train = mnist.get_set('train')
  x_test, y_test = mnist.get_set('test')

  # Use Image Parameters
  img_rows, img_cols, nchannels = x_train.shape[1:4]
github tensorflow / cleverhans / cleverhans_tutorials / mnist_tutorial_jsma.py View on Github external
:param nb_classes: number of output classes
  :param source_samples: number of test inputs to attack
  :param learning_rate: learning rate for training
  :return: an AccuracyReport object
  """
  # Object used to keep track of (and return) key accuracies
  report = AccuracyReport()

  # Set TF random seed to improve reproducibility
  tf.set_random_seed(1234)

  # Create TF session and set as Keras backend session
  sess = tf.Session()
  print("Created TensorFlow session.")

  set_log_level(logging.DEBUG)

  # Get MNIST test data
  mnist = MNIST(train_start=train_start, train_end=train_end,
                test_start=test_start, test_end=test_end)
  x_train, y_train = mnist.get_set('train')
  x_test, y_test = mnist.get_set('test')

  # Obtain Image Parameters
  img_rows, img_cols, nchannels = x_train.shape[1:4]
  nb_classes = y_train.shape[1]

  # Define input TF placeholder
  x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
                                        nchannels))
  y = tf.placeholder(tf.float32, shape=(None, nb_classes))
github tensorflow / cleverhans / cleverhans / model_zoo / soft_nearest_neighbor_loss / SNNL_regularized_train.py View on Github external
:param test_end: index of last test set example
  :param nb_epochs: number of epochs to train model
  :param batch_size: size of training batches
  :param learning_rate: learning rate for training
  :param SNNL_factor: multiplier for Soft Nearest Neighbor Loss
  :return: an AccuracyReport object
  """

  # Object used to keep track of (and return) key accuracies
  report = AccuracyReport()

  # Set TF random seed to improve reproducibility
  tf.set_random_seed(1234)

  # Set logging level to see debug information
  set_log_level(logging.DEBUG)

  # Create TF session
  sess = tf.Session()

  # Get MNIST data
  mnist = MNIST(train_start=train_start, train_end=train_end,
                test_start=test_start, test_end=test_end)
  x_train, y_train = mnist.get_set('train')
  x_test, y_test = mnist.get_set('test')

  # Use Image Parameters
  img_rows, img_cols, nchannels = x_train.shape[1:4]
  nb_classes = y_train.shape[1]

  # Define input TF placeholder
  x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
github tensorflow / cleverhans / examples / iterative_advtrain / train.py View on Github external
to verify that performance is adequate
    :param backprop_through_attack: If True, backprop through adversarial
                                    example construction process during
                                    adversarial training.
    :param clean_train: if true, train on clean examples
    :return: an AccuracyReport object
    """

    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    # Set logging level to see debug information
    set_log_level(logging.DEBUG)

    # Create TF session
    sess = tf.Session()

    # Get MNIST test data
    X_train, Y_train, X_test, Y_test = data_mnist(train_start=train_start,
                                                  train_end=train_end,
                                                  test_start=test_start,
                                                  test_end=test_end)

    # Use label smoothing
    assert Y_train.shape[1] == 10
    label_smooth = .1
    Y_train = Y_train.clip(label_smooth / 9., 1. - label_smooth)

    # Define input TF placeholder
github tensorflow / cleverhans / cleverhans_tutorials / mnist_tutorial_picklable.py View on Github external
to verify that performance is adequate
  :param backprop_through_attack: If True, backprop through adversarial
                                  example construction process during
                                  adversarial training.
  :param label_smoothing: float, amount of label smoothing for cross entropy
  :return: an AccuracyReport object
  """

  # Object used to keep track of (and return) key accuracies
  report = AccuracyReport()

  # Set TF random seed to improve reproducibility
  tf.set_random_seed(1234)

  # Set logging level to see debug information
  set_log_level(logging.DEBUG)

  # Create TF session
  if num_threads:
    config_args = dict(intra_op_parallelism_threads=1)
  else:
    config_args = {}
  sess = tf.Session(config=tf.ConfigProto(**config_args))

  # Get MNIST test data
  mnist = MNIST(train_start=train_start, train_end=train_end,
                test_start=test_start, test_end=test_end)
  x_train, y_train = mnist.get_set('train')
  x_test, y_test = mnist.get_set('test')

  # Use Image Parameters
  img_rows, img_cols, nchannels = x_train.shape[1:4]
github tensorflow / cleverhans / cleverhans_tutorials / mnist_tutorial_cw.py View on Github external
:param learning_rate: learning rate for training
  :param model_path: path to the model file
  :param targeted: should we run a targeted attack? or untargeted?
  :return: an AccuracyReport object
  """
  # Object used to keep track of (and return) key accuracies
  report = AccuracyReport()

  # Set TF random seed to improve reproducibility
  tf.set_random_seed(1234)

  # Create TF session
  sess = tf.Session()
  print("Created TensorFlow session.")

  set_log_level(logging.DEBUG)

  # Get MNIST test data
  mnist = MNIST(train_start=train_start, train_end=train_end,
                test_start=test_start, test_end=test_end)
  x_train, y_train = mnist.get_set('train')
  x_test, y_test = mnist.get_set('test')

  # Obtain Image Parameters
  img_rows, img_cols, nchannels = x_train.shape[1:4]
  nb_classes = y_train.shape[1]

  # Define input TF placeholder
  x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols,
                                        nchannels))
  y = tf.placeholder(tf.float32, shape=(None, nb_classes))
  nb_filters = 64
github tensorflow / cleverhans / cleverhans_tutorials / mnist_tutorial_tfe.py View on Github external
adversarial training.
  :param nb_filters: number of filters in the CNN used for training.
  :param num_threads: number of threads used for running the process.
  :param attack_string: attack name for crafting adversarial attacks and
                          adversarial training, in string format.
  :return: an AccuracyReport object
  """

  # Object used to keep track of (and return) key accuracies
  report = AccuracyReport()

  # Set TF random seed to improve reproducibility
  tf.set_random_seed(1234)

  # Set logging level to see debug information
  set_log_level(logging.DEBUG)

  # Get MNIST test data
  mnist = MNIST(train_start=train_start, train_end=train_end,
                test_start=test_start, test_end=test_end)
  X_train, Y_train = mnist.get_set('train')
  X_test, Y_test = mnist.get_set('test')

  # Use label smoothing
  assert Y_train.shape[1] == 10
  label_smooth = .1
  Y_train = Y_train.clip(label_smooth / 9., 1. - label_smooth)

  # Train an MNIST model
  train_params = {
      'nb_epochs': nb_epochs,
      'batch_size': batch_size,