How to use the chainer.links.BatchNormalization function in chainer

To help you get started, we’ve selected a few chainer examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github akitotakeki / pgp-chainer / models_imagenet / shufflenetv2_pgp.py View on Github external
def __init__(self, in_channels, out_channels,
                 stride=1, splits_left=2, initialW=None):
        super(ShuffleNetV2Block, self).__init__()

        with self.init_scope():
            if stride == 2:
                self.conv1 = L.Convolution2D(
                    in_channels, in_channels, 1, 1, 0, initialW=initialW,
                    nobias=True)
                self.bn1 = L.BatchNormalization(in_channels)
                self.conv2 = L.DepthwiseConvolution2D(
                    in_channels, 1, 3, 1, 1,
                    initialW=initialW, nobias=True)
                self.bn2 = L.BatchNormalization(in_channels)
                self.conv3 = L.Convolution2D(
                    in_channels, out_channels // 2, 1, 1, 0, initialW=initialW,
                    nobias=True)
                self.bn3 = L.BatchNormalization(out_channels // 2)
                self.conv4 = L.DepthwiseConvolution2D(
                    in_channels, 1, 3, 1, 1,
                    initialW=initialW, nobias=True)
                self.bn4 = L.BatchNormalization(in_channels)
                self.conv5 = L.Convolution2D(
                    in_channels, out_channels // 2, 1, 1, 0, initialW=initialW,
                    nobias=True)
                self.bn5 = L.BatchNormalization(out_channels // 2)
            elif stride == 1:
                self.in_channels = in_channels - in_channels // splits_left
                self.conv1 = L.Convolution2D(
                    self.in_channels, self.in_channels, 1, 1, 0,
github hvy / chainer-inception-score / inception_score.py View on Github external
])
            self.mixed_3 = Mixed([
                ('conv', Tower([
                    ('conv', L.Convolution2D(288, 384, 3, stride=2, pad=0)),
                    ('bn_conv', L.BatchNormalization(384)),
                    ('_relu', F.relu)
                ])),
                ('tower', Tower([
                    ('conv', L.Convolution2D(288, 64, 1, stride=1, pad=0)),
                    ('bn_conv', L.BatchNormalization(64)),
                    ('_relu', F.relu),
                    ('conv_1', L.Convolution2D(64, 96, 3, stride=1, pad=1)),
                    ('bn_conv_1', L.BatchNormalization(96)),
                    ('_relu_1', F.relu),
                    ('conv_2', L.Convolution2D(96, 96, 3, stride=2, pad=0)),
                    ('bn_conv_2', L.BatchNormalization(96)),
                    ('_relu_2', F.relu)
                ])),
                ('pool', Tower([
                    ('_pooling', MaxPooling2D(3, 2, 0))
                ]))
            ])
            self.mixed_4 = Mixed([
                ('conv', Tower([
                    ('conv', L.Convolution2D(768, 192, 1, stride=1, pad=0)),
                    ('bn_conv', L.BatchNormalization(192)),
                    ('_relu', F.relu)
                ])),
                ('tower', Tower([
                    ('conv', L.Convolution2D(768, 128, 1, stride=1, pad=0)),
                    ('bn_conv', L.BatchNormalization(128)),
                    ('_relu', F.relu),
github naoto0804 / chainer-cyclegan / net.py View on Github external
def get_norm_layer(norm='instance'):
    # unchecked: init weight of bn
    if norm == 'batch':
        norm_layer = functools.partial(L.BatchNormalization, use_gamma=True,
                                       use_beta=True)
    elif norm == 'instance':
        norm_layer = functools.partial(InstanceNormalization, use_gamma=False,
                                       use_beta=False)
    else:
        raise NotImplementedError(
            'normalization layer [%s] is not found' % norm)
    return norm_layer
github chainer / chainer / examples / imagenet / alexbn.py View on Github external
def __init__(self):
        super(AlexBN, self).__init__(
            conv1=L.Convolution2D(3,  96, 11, stride=4),
            bn1=L.BatchNormalization(96),
            conv2=L.Convolution2D(96, 256,  5, pad=2),
            bn2=L.BatchNormalization(256),
            conv3=L.Convolution2D(256, 384,  3, pad=1),
            conv4=L.Convolution2D(384, 384,  3, pad=1),
            conv5=L.Convolution2D(384, 256,  3, pad=1),
            fc6=L.Linear(9216, 4096),
            fc7=L.Linear(4096, 4096),
            fc8=L.Linear(4096, 1000),
        )
        self.train = True
github musyoku / adversarial-autoencoder / sequential / layers.py View on Github external
def to_link(self):
		args = self.to_chainer_args()
		if args["dtype"] == "float32":
			args["dtype"] = numpy.float32
		elif args["dtype"] == "float64":
			args["dtype"] = numpy.float64
		elif args["dtype"] == "float16":
			args["dtype"] = numpy.float16
		return chainer.links.BatchNormalization(**args)
github funalab / QCANet / src / lib / model.py View on Github external
dc5=L.ConvolutionND(ndim, int(init_channel * (ap_factor ** 3)), int(init_channel * (ap_factor ** 3)), kernel_size, 1, int(kernel_size/2), initialW=initializer, initial_bias=None),

            dc6=L.DeconvolutionND(ndim, int(init_channel * (ap_factor ** 3)), int(init_channel * (ap_factor ** 3)), self.pool_size, self.pool_size, 0, initialW=initializer, initial_bias=None),
            dc7=L.ConvolutionND(ndim, int(init_channel * (ap_factor ** 2) + init_channel * (ap_factor ** 3)), int(init_channel * (ap_factor ** 2)), kernel_size, 1, int(kernel_size/2), initialW=initializer, initial_bias=None),
            dc8=L.ConvolutionND(ndim, int(init_channel * (ap_factor ** 2)), int(init_channel * (ap_factor ** 2)), kernel_size, 1, int(kernel_size/2), initialW=initializer, initial_bias=None),

            dc9=L.DeconvolutionND(ndim, int(init_channel * (ap_factor ** 2)), int(init_channel * (ap_factor ** 2)), self.pool_size, self.pool_size, 0, initialW=initializer, initial_bias=None),
            dc10=L.ConvolutionND(ndim, int(init_channel * (ap_factor ** 1) + init_channel * (ap_factor ** 2)), int(init_channel * (ap_factor ** 1)), kernel_size, 1, int(kernel_size/2), initialW=initializer, initial_bias=None),
            dc11=L.ConvolutionND(ndim, int(init_channel * (ap_factor ** 1)), int(init_channel * (ap_factor ** 1)), kernel_size, 1, int(kernel_size/2), initialW=initializer, initial_bias=None),

            dc12=L.ConvolutionND(ndim, int(init_channel * (ap_factor ** 1)), n_class, 1, 1, initialW=initializer, initial_bias=None),

            bnc0=L.BatchNormalization(init_channel),
            bnc1=L.BatchNormalization(int(init_channel * (ap_factor ** 1))),

            bnc2=L.BatchNormalization(int(init_channel * (ap_factor ** 1))),
            bnc3=L.BatchNormalization(int(init_channel * (ap_factor ** 2))),

            bnc4=L.BatchNormalization(int(init_channel * (ap_factor ** 2))),
            bnc5=L.BatchNormalization(int(init_channel * (ap_factor ** 3))),

            bnc6=L.BatchNormalization(int(init_channel * (ap_factor ** 3))),
            bnc7=L.BatchNormalization(int(init_channel * (ap_factor ** 4))),

            bnc8=L.BatchNormalization(int(init_channel * (ap_factor ** 4))),
            bnc9=L.BatchNormalization(int(init_channel * (ap_factor ** 5))),
            bndc1=L.BatchNormalization(int(init_channel * (ap_factor ** 4))),
            bndc2=L.BatchNormalization(int(init_channel * (ap_factor ** 4))),
            bndc4=L.BatchNormalization(int(init_channel * (ap_factor ** 3))),
            bndc5=L.BatchNormalization(int(init_channel * (ap_factor ** 3))),
            bndc7=L.BatchNormalization(int(init_channel * (ap_factor ** 2))),
            bndc8=L.BatchNormalization(int(init_channel * (ap_factor ** 2))),
github osmr / imgclsmob / chainer_ / chainercv2 / models / mixnet.py View on Github external
super(MixConvBlock, self).__init__()
        self.activate = (activation is not None)
        self.use_bn = use_bn

        with self.init_scope():
            self.conv = MixConv(
                in_channels=in_channels,
                out_channels=out_channels,
                ksize=ksize,
                stride=stride,
                pad=pad,
                dilate=dilate,
                groups=groups,
                use_bias=use_bias)
            if self.use_bn:
                self.bn = L.BatchNormalization(
                    size=out_channels,
                    eps=bn_eps)
            if self.activate:
                self.activ = get_activation_layer(activation)
github sharpstill / AU_R-CNN / AU_rcnn / links / model / faster_rcnn / faster_rcnn_mobilenet_v1.py View on Github external
bn_end_point = end_point + "_batchnorm"
                    setattr(self, bn_end_point, L.BatchNormalization(size=self.depth(conv_def.depth)))
                    self.layer_names.append(bn_end_point)
                    if end_point == final_endpoint:
                        return
                elif isinstance(conv_def, DepthSepConv):

                    end_point = end_point_base + '_depthwise'
                    if use_explicit_padding:
                        self.layer_names.append(("use_explicit_padding", conv_def.kernel, layer_rate))
                    setattr(self, end_point, L.DepthwiseConvolution2D(in_channels=self.depth(conv_def.inchannel), channel_multiplier=1,
                                                                      ksize=conv_def.kernel, stride=layer_stride, pad=pad,nobias=False,
                                                                      initialW=initialW))
                    self.layer_names.append(end_point)
                    bn_end_point = end_point + "_batchnorm"
                    setattr(self, bn_end_point, L.BatchNormalization(size=self.depth(conv_def.inchannel)))
                    self.layer_names.append(bn_end_point)
                    if end_point == final_endpoint:
                        return
                    end_point = end_point_base + '_pointwise'

                    setattr(self, end_point, L.Convolution2D(in_channels=self.depth(conv_def.inchannel), out_channels=self.depth(conv_def.depth),
                                                             ksize=[1,1], stride=1, pad=0, nobias=False, initialW=initialW))
                    self.layer_names.append(end_point)
                    bn_end_point = end_point + "_batchnorm"
                    setattr(self, bn_end_point, L.BatchNormalization(size=self.depth(conv_def.depth)))
                    self.layer_names.append(bn_end_point)
                    if end_point == final_endpoint:
                        return
                else:
                    raise ValueError('Unknown convolution type %s for layer %d'
                                     % (conv_def.ltype, i))