Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def render_scatplot(self):
peakdata=ArrayPlotData()
peakdata.set_data("index",self.peaks[self.img_idx][:,0])
peakdata.set_data("value",self.peaks[self.img_idx][:,1])
peakdata.set_data("color",self.peaks[self.img_idx][:,2])
scatplot=Plot(peakdata,aspect_ratio=self.img_plot.aspect_ratio,default_origin="top left")
scatplot.plot(("index", "value", "color"),
type="cmap_scatter",
name="my_plot",
color_mapper=jet(DataRange1D(low = 0.0,
high = 1.0)),
marker = "circle",
fill_alpha = 0.5,
marker_size = 6,
)
scatplot.x_grid.visible = False
scatplot.y_grid.visible = False
scatplot.range2d=self.img_plot.range2d
self.scatplot=scatplot
self.peakdata=peakdata
return scatplot
class CameraImage(HasTraits):
data = Array()
data_store = Instance(ArrayPlotData)
plot = Instance(Plot)
hud_overlay = Instance(PlotLabel)
# Number of steps of 90 degrees to rotate the image before
# displaying it - must be between 0 and 3
rotate = Range(0, 3)
# Colormap to use for display; None means use the image's natural
# colors (if RGB data) or grayscale (if monochrome). Setting @cmap
# to a value coerces the image to monochrome.
cmap = Enum(None, gray, bone, pink, jet, isoluminant, awesome)
view = View(Item('plot', show_label=False, editor=ComponentEditor()))
def __init__(self, **traits):
super(CameraImage, self).__init__(**traits)
self._dims = (200, 320)
self.data_store = ArrayPlotData(image=self.data)
self._hud = dict()
self.plot = Plot(self.data_store)
# Draw the image
renderers = self.plot.img_plot('image', name='camera_image',
colormap=fix(gray, (0, 255)))
self._image = renderers[0]
self.plot.aspect_ratio = float(self._dims[1]) / self._dims[0]
self.hud_overlay = PlotLabel(text='', component=self.plot,
# Create a scalar field to colormap
xs = linspace(0, 10, 600)
ys = linspace(0, 5, 600)
x, y = meshgrid(xs,ys)
z = exp(-(x**2+y**2)/100)
# Create a plot data object and give it this data
pd = ArrayPlotData()
pd.set_data("imagedata", z)
# Create the plot
plot = Plot(pd)
img_plot = plot.img_plot("imagedata",
xbounds=(0, 10),
ybounds=(0, 5),
colormap=jet)[0]
# Tweak some of the plot properties
plot.title = "My First Image Plot"
plot.padding = 50
# Attach some tools to the plot
plot.tools.append(PanTool(plot))
zoom = ZoomTool(component=img_plot, tool_mode="box", always_on=False)
img_plot.overlays.append(zoom)
return plot
# Create the plot
plot = Plot(pd)
plot.index_range.add(index_ds)
plot.value_range.add(value_ds)
# Create the index and value mappers using the plot data ranges
imapper = LinearMapper(range=plot.index_range)
vmapper = LinearMapper(range=plot.value_range)
# Create the scatter renderer
scatter = ColormappedScatterPlot(
index=index_ds,
value=value_ds,
color_data=color_ds,
color_mapper=jet(range=DataRange1D(low=0.0, high=1.0)),
fill_alpha=0.4,
index_mapper = imapper,
value_mapper = vmapper,
marker='circle',
marker_size=marker_size)
# Append the renderer to the list of the plot's plots
plot.add(scatter)
plot.plots['var_size_scatter'] = [scatter]
# Tweak some of the plot properties
plot.title = "Variable Size and Color Scatter Plot"
plot.line_width = 0.5
plot.padding = 50
# Attach some tools to the plot
except:
try:
import cv2.cv as cv
except:
print "OpenCV unavailable. Can't do cross correlation without it. Aborting."
return None
self.OK_custom=OK_custom_handler()
self.sig=signal_instance
if not hasattr(self.sig.mapped_parameters,"original_files"):
self.titles=[os.path.splitext(self.sig.mapped_parameters.title)[0]]
else:
self.numfiles=len(self.sig.mapped_parameters.original_files.keys())
self.titles=self.sig.mapped_parameters.original_files.keys()
tmp_plot_data=ArrayPlotData(imagedata=self.sig.data[self.img_idx,self.top:self.top+self.tmp_size,self.left:self.left+self.tmp_size])
tmp_plot=Plot(tmp_plot_data,default_origin="top left")
tmp_plot.img_plot("imagedata", colormap=jet)
tmp_plot.aspect_ratio=1.0
self.tmp_plot=tmp_plot
self.tmp_plotdata=tmp_plot_data
self.img_plotdata=ArrayPlotData(imagedata=self.sig.data[self.img_idx,:,:])
self.img_container=self._image_plot_container()
self.crop_sig=None
ybounds = (-1.5*pi, 1.5*pi, 300)
xs = linspace(*xbounds)
ys = linspace(*ybounds)
x, y = meshgrid(xs,ys)
z = sin(x)*y
# Create a plot data obect and give it this data
pd = ArrayPlotData()
pd.set_data("imagedata", z)
# Create the plot
plot = Plot(pd)
img_plot = plot.img_plot("imagedata",
xbounds=xbounds[:2],
ybounds=ybounds[:2],
colormap=jet)[0]
# Tweak some of the plot properties
plot.title = "Image Plot with Lasso"
plot.padding = 50
lasso_selection = LassoSelection(component=img_plot)
lasso_selection.on_trait_change(lasso_updated, "disjoint_selections")
lasso_overlay = LassoOverlay(lasso_selection = lasso_selection, component=img_plot)
img_plot.tools.append(lasso_selection)
img_plot.overlays.append(lasso_overlay)
return plot
def _create_plot_component(self):
# Create a plot data object and give it this data
self.pd = ArrayPlotData()
self.pd.set_data("imagedata", self.data[self.data_name])
# Create the plot
self.tplot = Plot(self.pd, default_origin="top left")
self.tplot.x_axis.orientation = "top"
self.tplot.img_plot("imagedata",
name="my_plot",
#xbounds=(0,10),
#ybounds=(0,10),
colormap=jet)
# Tweak some of the plot properties
self.tplot.title = "Matrix"
self.tplot.padding = 50
# Right now, some of the tools are a little invasive, and we need the
# actual CMapImage object to give to them
self.my_plot = self.tplot.plots["my_plot"][0]
# Attach some tools to the plot
self.tplot.tools.append(PanTool(self.tplot))
zoom = ZoomTool(component=self.tplot, tool_mode="box", always_on=False)
self.tplot.overlays.append(zoom)
# my custom tool to get the connection information
self.custtool = CustomTool(self.tplot)
# Create a plot data object and give it this data
self.pd = ArrayPlotData()
self.pd.set_data("imagedata", self.data[self.data_name])
# find dimensions
xdim = self.data[self.data_name].shape[1]
ydim = self.data[self.data_name].shape[0]
# Create the plot
self.tplot = Plot(self.pd, default_origin="top left")
self.tplot.x_axis.orientation = "top"
self.tplot.img_plot("imagedata",
name="my_plot",
xbounds=(0.5,xdim + 0.5),
ybounds=(0.5,ydim + 0.5),
colormap=jet)
# Tweak some of the plot properties
self.tplot.title = "Connection Matrix for %s" % self.data_name
self.tplot.padding = 80
# Right now, some of the tools are a little invasive, and we need the
# actual CMapImage object to give to them
self.my_plot = self.tplot.plots["my_plot"][0]
# Attach some tools to the plot
self.tplot.tools.append(PanTool(self.tplot))
zoom = ZoomTool(component=self.tplot, tool_mode="box", always_on=False)
self.tplot.overlays.append(zoom)
# my custom tool to get the connection information
self.custtool = CustomTool(self.tplot)