Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def numpartition_qaoa(n_step, nums, minimizer=None, sampler=None):
"""Do the Number partition QAOA.
:param n_step: The number of step of QAOA
:param nums: The edges list of the graph.
:returns Vqe object
"""
hamiltonian = pauli.Expr.zero()
for i, x in enumerate(nums):
hamiltonian += pauli.Z[i] * x
hamiltonian = (hamiltonian ** 2).simplify()
return vqe.Vqe(vqe.QaoaAnsatz(hamiltonian, n_step), minimizer, sampler)
def mk_expr(offset, n):
expr = pauli.Expr.from_number(1)
for i in range(n):
expr = expr + 2**(i + 1) * q(i + offset)
return expr
:param n_step: The number of step of QAOA
:param n_sample: The number of sampling time of each measurement in VQE.
If None, use calculated ideal value.
:param edges: The edges list of the graph.
:returns Vqe object
"""
sampler = sampler or vqe.non_sampling_sampler
minimizer = minimizer or vqe.get_scipy_minimizer(
method="Powell",
options={"ftol": 5.0e-2, "xtol": 5.0e-2, "maxiter": 1000, "disp": True}
)
hamiltonian = pauli.I() * 0
for i, j in edges:
hamiltonian += pauli.Z(i) * pauli.Z(j)
return vqe.Vqe(vqe.QaoaAnsatz(hamiltonian, n_step), minimizer, sampler)
:param n_step: The number of step of QAOA
:param n_sample: The number of sampling time of each measurement in VQE.
If None, use calculated ideal value.
:param edges: The edges list of the graph.
:returns Vqe object
"""
sampler = sampler or vqe.non_sampling_sampler
minimizer = minimizer or vqe.get_scipy_minimizer(
method="Powell",
options={"ftol": 5.0e-2, "xtol": 5.0e-2, "maxiter": 1000, "disp": True}
)
hamiltonian = pauli.I() * 0
for i, j in edges:
hamiltonian += pauli.Z(i) * pauli.Z(j)
return vqe.Vqe(vqe.QaoaAnsatz(hamiltonian, n_step), minimizer, sampler)
def numpartition_qaoa(n_step, nums, minimizer=None, sampler=None):
"""Do the Number partition QAOA.
:param n_step: The number of step of QAOA
:param nums: The edges list of the graph.
:returns Vqe object
"""
hamiltonian = pauli.Expr.zero()
for i, x in enumerate(nums):
hamiltonian += pauli.Z[i] * x
hamiltonian = (hamiltonian ** 2).simplify()
return vqe.Vqe(vqe.QaoaAnsatz(hamiltonian, n_step), minimizer, sampler)
:param n_step: The number of step of QAOA
:param n_sample: The number of sampling time of each measurement in VQE.
If None, use calculated ideal value.
:param edges: The edges list of the graph.
:returns Vqe object
"""
sampler = sampler or vqe.non_sampling_sampler
minimizer = minimizer or vqe.get_scipy_minimizer(
method="Powell",
options={"ftol": 5.0e-2, "xtol": 5.0e-2, "maxiter": 1000, "disp": True}
)
hamiltonian = pauli.I() * 0
for i, j in edges:
hamiltonian += pauli.Z(i) * pauli.Z(j)
return vqe.Vqe(vqe.QaoaAnsatz(hamiltonian, n_step), minimizer, sampler)
def pauli(self, simplify=True) -> blueqat.pauli.Expr:
expr = sum(reduce(operator.mul, map(blueqat.pauli.qubo_bit, ind)) * val if ind else val
for ind, val in self.terms.items())
if simplify:
return expr.to_expr().simplify()
return expr.to_expr()
def maxcut_qaoa(n_step, edges, minimizer=None, sampler=None, verbose=True):
"""Setup QAOA.
:param n_step: The number of step of QAOA
:param n_sample: The number of sampling time of each measurement in VQE.
If None, use calculated ideal value.
:param edges: The edges list of the graph.
:returns Vqe object
"""
sampler = sampler or vqe.non_sampling_sampler
minimizer = minimizer or vqe.get_scipy_minimizer(
method="Powell",
options={"ftol": 5.0e-2, "xtol": 5.0e-2, "maxiter": 1000, "disp": True}
)
hamiltonian = pauli.I() * 0
for i, j in edges:
hamiltonian += pauli.Z(i) * pauli.Z(j)
return vqe.Vqe(vqe.QaoaAnsatz(hamiltonian, n_step), minimizer, sampler)
def maxcut_qaoa(n_step, edges, minimizer=None, sampler=None, verbose=True):
"""Setup QAOA.
:param n_step: The number of step of QAOA
:param n_sample: The number of sampling time of each measurement in VQE.
If None, use calculated ideal value.
:param edges: The edges list of the graph.
:returns Vqe object
"""
sampler = sampler or vqe.non_sampling_sampler
minimizer = minimizer or vqe.get_scipy_minimizer(
method="Powell",
options={"ftol": 5.0e-2, "xtol": 5.0e-2, "maxiter": 1000, "disp": True}
)
hamiltonian = pauli.I() * 0
for i, j in edges:
hamiltonian += pauli.Z(i) * pauli.Z(j)
return vqe.Vqe(vqe.QaoaAnsatz(hamiltonian, n_step), minimizer, sampler)
def maxcut_qaoa(n_step, edges, minimizer=None, sampler=None, verbose=True):
"""Setup QAOA.
:param n_step: The number of step of QAOA
:param n_sample: The number of sampling time of each measurement in VQE.
If None, use calculated ideal value.
:param edges: The edges list of the graph.
:returns Vqe object
"""
sampler = sampler or vqe.non_sampling_sampler
minimizer = minimizer or vqe.get_scipy_minimizer(
method="Powell",
options={"ftol": 5.0e-2, "xtol": 5.0e-2, "maxiter": 1000, "disp": True}
)
hamiltonian = pauli.I() * 0
for i, j in edges:
hamiltonian += pauli.Z(i) * pauli.Z(j)
return vqe.Vqe(vqe.QaoaAnsatz(hamiltonian, n_step), minimizer, sampler)