How to use the autolens.pipeline.pipeline.PipelineImaging function in autolens

To help you get started, we’ve selected a few autolens examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Jammy2211 / PyAutoLens / test / integration / lens_and_source / lens_x1_src_x1_pos.py View on Github external
def make_pipeline(pipeline_name):
    phase1 = ph.LensSourcePlanePhase(lens_galaxies=[gm.GalaxyModel(sie=mp.EllipticalIsothermal)],
                                     source_galaxies=[gm.GalaxyModel(sersic=lp.EllipticalSersic)],
                                     optimizer_class=nl.MultiNest,
                                     positions=[[[1.0, 1.0], [1.0, -1.0], [-1.0, 1.0], [-1.0, -1.0]]],
                                     phase_name="{}/phase1".format(pipeline_name))

    phase1.optimizer.n_live_points = 30
    phase1.optimizer.sampling_efficiency = 0.8

    return pl.PipelineImaging(pipeline_name, phase1)
github Jammy2211 / PyAutoLens / test / integration / model_mapper / align_centres.py View on Github external
def make_pipeline(pipeline_name):
    class MMPhase(ph.LensPlanePhase):
        pass

    phase1 = MMPhase(lens_galaxies=[gm.GalaxyModel(sersic0=lp.EllipticalSersic, sersic1=lp.EllipticalSersic,
                                                   sie=mp.EllipticalIsothermal, align_centres=True)],
                     optimizer_class=nl.MultiNest, phase_name="{}/phase1".format(pipeline_name))

    phase1.optimizer.n_live_points = 20
    phase1.optimizer.sampling_efficiency = 0.8

    return pl.PipelineImaging(pipeline_name, phase1)
github Jammy2211 / PyAutoLens / test / integration / model_mapper / constants_x2_profile.py View on Github external
self.lens_galaxies[0].sersic0.axis_ratio = 0.2
            self.lens_galaxies[0].sersic0.phi = 90.0
            self.lens_galaxies[0].sersic0.centre_0 = 1.0
            self.lens_galaxies[0].sersic0.centre_1 = 2.0
            self.lens_galaxies[0].sersic1.axis_ratio = 0.2
            self.lens_galaxies[0].sersic1.phi = 90.0
            self.lens_galaxies[0].sersic1.centre_0 = 1.0
            self.lens_galaxies[0].sersic1.centre_1 = 2.0

    phase1 = MMPhase(lens_galaxies=[gm.GalaxyModel(sersic0=lp.EllipticalSersic, sersic1=lp.EllipticalSersic)],
                     optimizer_class=nl.MultiNest, phase_name="{}/phase1".format(pipeline_name))

    phase1.optimizer.n_live_points = 20
    phase1.optimizer.sampling_efficiency = 0.8

    return pl.PipelineImaging(pipeline_name, phase1)
github Jammy2211 / PyAutoLens / test / integration / lens_only / lens_x2_gal.py View on Github external
self.lens_galaxies[0].sersic.centre_1 = -1.0
            self.lens_galaxies[1].sersic.centre_0 = 1.0
            self.lens_galaxies[1].sersic.centre_1 = 1.0

    def modify_mask_function(img):
        return msk.Mask.circular(shape=img.shape, pixel_scale=img.pixel_scale, radius_mask_arcsec=5.)

    phase1 = LensPlanex2GalPhase(lens_galaxies=[gm.GalaxyModel(sersic=lp.EllipticalSersic),
                                                gm.GalaxyModel(sersic=lp.EllipticalSersic)],
                                 mask_function=modify_mask_function, optimizer_class=nl.MultiNest,
                                 phase_name="{}/phase1".format(pipeline_name))

    phase1.optimizer.n_live_points = 40
    phase1.optimizer.sampling_efficiency = 0.8

    return pl.PipelineImaging(pipeline_name, phase1)
github Jammy2211 / PyAutoLens / test / integration / lens_only / lens_x1_gal.py View on Github external
def make_pipeline(pipeline_name):
    
    phase1 = ph.LensPlanePhase(lens_galaxies=[gm.GalaxyModel(sersic=lp.EllipticalSersic)],
                               optimizer_class=nl.MultiNest, phase_name="{}/phase1".format(pipeline_name))

    phase1.optimizer.n_live_points = 40
    phase1.optimizer.sampling_efficiency = 0.8

    return pl.PipelineImaging(pipeline_name, phase1)
github Jammy2211 / PyAutoLens / test / integration / lens_and_source / lens_x1_src_x1_hyper.py View on Github external
class SourceHyperPhase(ph.LensSourcePlaneHyperPhase):
        def pass_priors(self, previous_results):
            phase1_results = previous_results[-1]
            phase1h_results = previous_results[-1].hyper
            #        self.lens_galaxies[0] = previous_results[-1].variable.lens_galaxies[0]
            self.source_galaxies = phase1_results.variable.source_galaxies
            self.source_galaxies[0].hyper_galaxy = phase1h_results.constant.source_galaxies[0].hyper_galaxy

    phase2 = SourceHyperPhase(lens_galaxies=[gm.GalaxyModel(sie=mp.EllipticalIsothermal)],
                              source_galaxies=[gm.GalaxyModel(sersic=lp.EllipticalSersic)],
                              optimizer_class=nl.MultiNest, phase_name="{}/phase2".format(pipeline_name))

    phase2.optimizer.n_live_points = 40
    phase2.optimizer.sampling_efficiency = 0.8

    return pl.PipelineImaging(pipeline_name, phase1, phase1h, phase2)
github Jammy2211 / PyAutoLens / test / pipeline / test_pipeline.py View on Github external
def test_addition(self):
        phase_1 = DummyPhaseImaging()
        phase_2 = DummyPhaseImaging()
        phase_3 = DummyPhaseImaging()

        pipeline1 = pl.PipelineImaging("", phase_1, phase_2)
        pipeline2 = pl.PipelineImaging("", phase_3)

        assert (phase_1, phase_2, phase_3) == (pipeline1 + pipeline2).phases
github Jammy2211 / PyAutoLens / autolens / runners / lens_and_source / initialize_all.py View on Github external
from autolens.pipeline import phase
    from autolens.pipeline import pipeline
    from autofit.core import non_linear as nl
    from autolens.model.galaxy import galaxy_model as gp
    from autolens.model.profiles import light_profiles as lp
    from autolens.model.profiles import mass_profiles as mp

    phase1 = phase.LensSourcePlanePhase(lens_galaxies=[gp.GalaxyModel(light=lp.EllipticalSersic,
                                                                      mass=mp.EllipticalIsothermal)],
                                        source_galaxies=[gp.GalaxyModel(light=lp.EllipticalSersic)],
                                        optimizer_class=nl.MultiNest, phase_name='ph1_fit_all')

    phase1.optimizer.n_live_points = 80
    phase1.optimizer.sampling_efficiency = 0.6

    return pipeline.PipelineImaging(pipeline_name, phase1)
github Jammy2211 / PyAutoLens / workspace / pipelines / examples / lens_light_and_source_inversion.py View on Github external
self.lens_galaxies.lens.shear = previous_results[2].variable.lens.shear
            self.source_galaxies.source = previous_results[3].variable.source

    phase5 = InversionPhase(lens_galaxies=dict(lens=gm.GalaxyModel(light=lp.EllipticalSersic,
                                                                   mass=mp.EllipticalIsothermal,
                                                                   shear=mp.ExternalShear)),
                            source_galaxies=dict(source=gm.GalaxyModel(pixelization=pix.AdaptiveMagnification,
                                                                      regularization=reg.Constant)),
                            optimizer_class=nl.MultiNest, mask_function=mask_function_circular,
                            phase_name=pipeline_path + '/phase_5_inversion')

    phase5.optimizer.const_efficiency_mode = True
    phase5.optimizer.n_live_points = 60
    phase5.optimizer.sampling_efficiency = 0.4

    return pipeline.PipelineImaging(pipeline_path, phase1, phase2, phase3, phase4, phase5)