How to use the autogalaxy.plot.lensing_plotters function in autogalaxy

To help you get started, we’ve selected a few autogalaxy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Jammy2211 / PyAutoLens / autolens / plot / fit_imaging_plots.py View on Github external
@lensing_plotters.set_include_and_plotter
@plotters.set_labels
def model_image_of_plane(fit, plane_index, include=None, plotter=None):
    """Plot the model image of a specific plane of a lens fit.

    Set *autolens.datas.arrays.plotters.plotters* for a description of all input parameters not described below.

    Parameters
    -----------
    fit : datas.fitting.fitting.AbstractFitter
        The fit to the datas, which includes a list of every model image, residual_map, chi-squareds, etc.
    plane_indexes : [int]
        The plane from which the model image is generated.
    """

    if isinstance(plotter, lensing_plotters.Plotter):
        plotter = plotter.plotter_with_new_output(
github Jammy2211 / PyAutoLens / autolens / plot / fit_imaging_plots.py View on Github external
@lensing_plotters.set_include_and_plotter
@plotters.set_labels
def image(fit, include=None, plotter=None):
    """Plot the image of a lens fit.

    Set *autolens.datas.array.plotters.plotters* for a description of all input parameters not described below.

    Parameters
    -----------
    image : datas.imaging.datas.Imaging
        The datas-datas, which include the observed datas, noise_map, PSF, signal-to-noise_map, etc.
    origin : True
        If true, the origin of the datas's coordinate system is plotted as a 'x'.
    """

    plotter.plot_array(
        array=fit.data,
github Jammy2211 / PyAutoLens / autolens / pipeline / visualizer.py View on Github external
def __init__(self, image_path):

        self.plotter = lensing_plotters.Plotter(
            output=mat_objs.Output(path=image_path, format="png")
        )
        self.sub_plotter = lensing_plotters.SubPlotter(
            output=mat_objs.Output(path=image_path + "subplots/", format="png")
        )
        self.include = lensing_plotters.Include()

        self.plot_ray_tracing_all_at_end_png = plot_setting(
            "ray_tracing", "all_at_end_png"
        )
        self.plot_ray_tracing_all_at_end_fits = plot_setting(
            "ray_tracing", "all_at_end_fits"
        )
        self.plot_subplot_ray_tracing = plot_setting(
            "ray_tracing", "subplot_ray_tracing"
        )
github Jammy2211 / PyAutoLens / autolens / plot / ray_tracing_plots.py View on Github external
@lensing_plotters.set_include_and_sub_plotter
@plotters.set_subplot_filename
def subplot_tracer(tracer, grid, positions=None, include=None, sub_plotter=None):
    """Plot the observed _tracer of an analysis, using the *Imaging* class object.

    The visualization and output type can be fully customized.

    Parameters
    -----------
    tracer : autolens.imaging.tracer.Imaging
        Class containing the _tracer,  noise_mappers and PSF that are to be plotted.
        The font size of the figure ylabel.
    output_path : str
        The path where the _tracer is output if the output_type is a file format (e.g. png, fits)
    output_format : str
        How the _tracer is output. File formats (e.g. png, fits) output the _tracer to harddisk. 'show' displays the _tracer \
        in the python interpreter window.
github Jammy2211 / PyAutoLens / autolens / pipeline / visualizer.py View on Github external
def __init__(self, image_path):

        self.plotter = lensing_plotters.Plotter(
            output=mat_objs.Output(path=image_path, format="png")
        )
        self.sub_plotter = lensing_plotters.SubPlotter(
            output=mat_objs.Output(path=image_path + "subplots/", format="png")
        )
        self.include = lensing_plotters.Include()

        self.plot_ray_tracing_all_at_end_png = plot_setting(
            "ray_tracing", "all_at_end_png"
        )
        self.plot_ray_tracing_all_at_end_fits = plot_setting(
            "ray_tracing", "all_at_end_fits"
        )
        self.plot_subplot_ray_tracing = plot_setting(
            "ray_tracing", "subplot_ray_tracing"
        )
        self.plot_ray_tracing_image = plot_setting("ray_tracing", "image")
        self.plot_ray_tracing_source_plane = plot_setting(
            "ray_tracing", "source_plane_image"
github Jammy2211 / PyAutoLens / autolens / plot / fit_imaging_plots.py View on Github external
@lensing_plotters.set_include_and_sub_plotter
@plotters.set_subplot_filename
def subplot_of_plane(fit, plane_index, include=None, sub_plotter=None):
    """Plot the model datas_ of an analysis, using the *Fitter* class object.

    The visualization and output type can be fully customized.

    Parameters
    -----------
    fit : autolens.lens.fitting.Fitter
        Class containing fit between the model datas_ and observed lens datas_ (including residual_map, chi_squared_map etc.)
    output_path : str
        The path where the datas_ is output if the output_type is a file format (e.g. png, fits)
    output_filename : str
        The name of the file that is output, if the output_type is a file format (e.g. png, fits)
    output_format : str
        How the datas_ is output. File formats (e.g. png, fits) output the datas_ to harddisk. 'show' displays the datas_ \
github Jammy2211 / PyAutoLens / autolens / plot / ray_tracing_plots.py View on Github external
@lensing_plotters.set_include_and_plotter
@plotters.set_labels
def potential(tracer, grid, include=None, plotter=None):

    plotter.plot_array(
        array=tracer.potential_from_grid(grid=grid),
        mask=include.mask_from_grid(grid=grid),
        critical_curves=include.critical_curves_from_obj(obj=tracer),
        light_profile_centres=include.light_profile_centres_from_obj(obj=tracer),
        mass_profile_centres=include.mass_profile_centres_from_obj(obj=tracer),
        include_origin=include.origin,
    )
github Jammy2211 / PyAutoLens / autolens / plot / fit_imaging_plots.py View on Github external
def subtracted_image_of_plane(fit, plane_index, include=None, plotter=None):
    """Plot the model image of a specific plane of a lens fit.

    Set *autolens.datas.arrays.plotters.plotters* for a description of all input parameters not described below.

    Parameters
    -----------
    fit : datas.fitting.fitting.AbstractFitter
        The fit to the datas, which includes a list of every model image, residual_map, chi-squareds, etc.
    image_index : int
        The index of the datas in the datas-set of which the model image is plotted.
    plane_indexes : int
        The plane from which the model image is generated.
    """

    if isinstance(plotter, lensing_plotters.Plotter):
        plotter = plotter.plotter_with_new_output(
            filename=plotter.output.filename + "_" + str(plane_index)
        )

    if fit.tracer.total_planes > 1:

        other_planes_model_images = [
            model_image
            for i, model_image in enumerate(fit.model_images_of_planes)
            if i != plane_index
        ]

        subtracted_image = fit.image - sum(other_planes_model_images)

    else:
github Jammy2211 / PyAutoLens / autolens / plot / fit_imaging_plots.py View on Github external
@lensing_plotters.set_include_and_sub_plotter
@plotters.set_subplot_filename
def subplot_fit_imaging(fit, include=None, sub_plotter=None):
    number_subplots = 6

    sub_plotter.open_subplot_figure(number_subplots=number_subplots)

    sub_plotter.setup_subplot(number_subplots=number_subplots, subplot_index=1)

    image(fit=fit, include=include, plotter=sub_plotter)

    sub_plotter.setup_subplot(number_subplots=number_subplots, subplot_index=2)

    signal_to_noise_map(fit=fit, include=include, plotter=sub_plotter)

    sub_plotter.setup_subplot(number_subplots=number_subplots, subplot_index=3)