How to use the autofit.ModelInstance function in autofit

To help you get started, we’ve selected a few autofit examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Jammy2211 / PyAutoLens / test / unit / pipeline / test_phase_extensions.py View on Github external
def test_defaults_both(self):
        # noinspection PyTypeChecker
        phase = phase_extensions.InversionBackgroundBothPhase(MockPhase())

        constant = af.ModelInstance()
        constant.hyper_image_sky = hd.HyperImageSky()
        constant.hyper_background_noise = hd.HyperBackgroundNoise()

        mapper = phase.make_variable(constant)

        assert isinstance(mapper.hyper_image_sky, af.PriorModel)
        assert isinstance(mapper.hyper_background_noise, af.PriorModel)

        assert mapper.hyper_image_sky.cls == hd.HyperImageSky
        assert mapper.hyper_background_noise.cls == hd.HyperBackgroundNoise
github Jammy2211 / PyAutoLens / test / unit / mock / pipeline / mock_pipeline.py View on Github external
def __init__(
        self,
        model_image=None,
        mask=None,
        galaxy_images=(),
        constant=None,
        analysis=None,
        optimizer=None,
        pixelization=None,
    ):
        self.model_image = model_image
        self.unmasked_model_image = model_image
        self.mask_2d = mask
        self.galaxy_images = galaxy_images
        self.constant = constant or af.ModelInstance()
        self.variable = af.ModelMapper()
        self.analysis = analysis
        self.optimizer = optimizer
        self.pixelization = pixelization
        self.hyper_combined = MockHyperCombinedPhase()
github Jammy2211 / PyAutoLens / test / unit / pipeline / test_pipeline.py View on Github external
def run(self, positions, pixel_scale, results):
        self.positions = positions
        self.pixel_scale = pixel_scale
        self.results = results
        return af.Result(af.ModelInstance(), 1)
github Jammy2211 / PyAutoLens / test_autolens / unit / pipeline / test_pipeline.py View on Github external
def run(self, positions, pixel_scales, results):
        self.save_metadata(MockImagingData())
        self.positions = positions
        self.pixel_scales = pixel_scales
        self.results = results
        return af.Result(af.ModelInstance(), 1)
github Jammy2211 / PyAutoLens / test_autolens / unit / pipeline / phase / extensions / test_phase_extensions.py View on Github external
def test__defaults_both(self):
        # noinspection PyTypeChecker
        phase = al.InversionBackgroundBothPhase(MockPhase())

        instance = af.ModelInstance()
        instance.hyper_image_sky = al.hyper_data.HyperImageSky()
        instance.hyper_background_noise = al.hyper_data.HyperBackgroundNoise()

        mapper = phase.make_model(instance)

        assert isinstance(mapper.hyper_image_sky, af.PriorModel)
        assert isinstance(mapper.hyper_background_noise, af.PriorModel)

        assert mapper.hyper_image_sky.cls == al.hyper_data.HyperImageSky
        assert mapper.hyper_background_noise.cls == al.hyper_data.HyperBackgroundNoise
github Jammy2211 / PyAutoLens / test_autolens / unit / pipeline / phase / interferometer / test_phase_interferometer.py View on Github external
def test__phase_is_extended_with_hyper_phases__sets_up_hyper_images(
        self, interferometer_7, mask_7x7
    ):

        galaxies = af.ModelInstance()
        galaxies.lens = al.Galaxy(redshift=0.5)
        galaxies.source = al.Galaxy(redshift=1.0)

        instance = af.ModelInstance()
        instance.galaxies = galaxies

        hyper_galaxy_image_path_dict = {
            ("galaxies", "lens"): al.Array.ones(shape_2d=(3, 3), pixel_scales=1.0),
            ("galaxies", "source"): al.Array.full(
                fill_value=2.0, shape_2d=(3, 3), pixel_scales=1.0
            ),
        }

        hyper_galaxy_visibilities_path_dict = {
            ("galaxies", "lens"): al.Visibilities.full(fill_value=4.0, shape_1d=(7,)),
            ("galaxies", "source"): al.Visibilities.full(fill_value=5.0, shape_1d=(7,)),
        }

        results = mock.MockResults(
            hyper_galaxy_image_path_dict=hyper_galaxy_image_path_dict,
github Jammy2211 / PyAutoLens / test / unit / mock / pipeline / mock_pipeline.py View on Github external
def __init__(
        self,
        model_image=None,
        mask=None,
        galaxy_images=(),
        constant=None,
        analysis=None,
        optimizer=None,
        pixelization=None,
    ):
        self.model_image = model_image
        self.unmasked_model_image = model_image
        self.mask_2d = mask
        self.galaxy_images = galaxy_images
        self.constant = constant or af.ModelInstance()
        self.variable = af.ModelMapper()
        self.analysis = analysis
        self.optimizer = optimizer
        self.pixelization = pixelization
        self.hyper_combined = MockHyperCombinedPhase()
github Jammy2211 / PyAutoLens / test / unit / pipeline / test_phase_extensions.py View on Github external
def make_instance(all_galaxies):
    instance = af.ModelInstance()
    instance.galaxies = all_galaxies
    return instance
github Jammy2211 / PyAutoLens / test / unit / pipeline / test_phase_extensions.py View on Github external
def test_defaults_hyper_image_sky(self):
        # noinspection PyTypeChecker
        phase = phase_extensions.InversionBackgroundSkyPhase(MockPhase())

        constant = af.ModelInstance()
        constant.hyper_image_sky = hd.HyperImageSky()

        mapper = phase.make_variable(constant)

        assert isinstance(mapper.hyper_image_sky, af.PriorModel)
        assert mapper.hyper_image_sky.cls == hd.HyperImageSky