How to use the astropy.io.fits.getdata function in astropy

To help you get started, weā€™ve selected a few astropy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github ChileanVirtualObservatory / acalib / acalib / stacking / crop.py View on Github external
def cropManual(inputDir, outputDir,E1,E2,E3,E4):
	data = glob.glob(inputDir+'/*.fits')
	borders = []
	# - - - - - -  CREA EL SUBDIRECTORIO PARA GUARDAR LAS FOTOS PNG - - - - - - 
	dir_png = outputDir+'/PNG_Images' 
	if not os.path.isdir(dir_png):
		os.makedirs(dir_png)
	for i in xrange(0,len(data)):

		name = data[i].split('/')[-1].split('.')[0]
		image = fits.getdata(data[i])
		if isinstance(image, list):
			image = image[0]

		print "Crop: "+'/Img_0_'+str(i)+'.fits'

		fits.writeto(outputDir+'/Img_0_'+str(i)+'.fits',image, clobber=True)	
		image = manualCrop(image,E1,E2,E3,E4)
		fits.writeto(outputDir+'/Img_1_'+str(i)+'.fits',image, clobber=True)

	print "Done."
github rabrahm / ceres / pucheros / pucherospipe.py View on Github external
os.remove( flat_P )
		if (os.access(sm_flat_fits,os.F_OK)):
			os.remove( sm_flat_fits )
	
		hdu = pyfits.PrimaryHDU( flat_S )
		hdu.writeto( S_flat_fits )
		hdu = pyfits.PrimaryHDU( flat_Ss )
		hdu.writeto( S_flat_fits_simple )
		hdu = pyfits.PrimaryHDU( P )
		hdu.writeto( flat_P )
		hdu = pyfits.PrimaryHDU( sm_flat )
		hdu.writeto( sm_flat_fits )

	# recover Flat spectra and P matrix	
	else:
		flat_S = pyfits.getdata(S_flat_fits)
		flat_Ss = pyfits.getdata(S_flat_fits_simple)
		P = pyfits.getdata(flat_P)
		sm_flat = pyfits.getdata( sm_flat_fits )

##################################################### Science images extraction ######################################################################
sm_flat, norms = GLOBALutils.FlatNormalize_single( sm_flat[:,1,:], mid=int(0.5*sm_flat.shape[2]),span=200)

new_list = []
new_list_obnames = []

for i in range(len(objects)):
    fsim = objects[i]
    obname = pucherosutils.search_name(fsim)
    if (object2do == 'all'):
        new_list.append(fsim)
        new_list_obnames.append( obname )
github astrojs / wcsjs / images / make_data.py View on Github external
# Get the global min and max pixel
    extents = []
    for f in glob.glob(path.join('..', 'test', 'data',"*.fits.gz")):
        data = fits.getdata(f)
        extents.append( np.nanmin(data) )
        extents.append( np.nanmax(data) )
    
    extents = np.array(extents)
    minimum = extents.min()
    maximum = extents.max()
    extent = float(maximum - minimum)
    extent = extent - 0.75 * extent
    
    for f in glob.glob(path.join('..', 'test', 'data', "*.fits.gz")):
        data = fits.getdata(f)
        
        data = (data - minimum) / extent
        data = (255.0 * data)
        data = np.clip(data, 0, 255).astype('uint8')
        data = np.flipud(data)
        
        im = Image.fromarray(data)
        im.save(f.replace('fits.gz', 'png'))
github henrysky / astroNN / astroNN / apogee / downloader.py View on Github external
:type flag: int
    :param commission: whether the spectra is taken during commissioning
    :type commission: bool

    :return: full file path and download in background if not found locally, False if cannot be found on server
    :rtype: str
    :History:
        | 2017-Nov-11 - Written - Henry Leung (University of Toronto)
        | 2018-Aug-31 - Updated - Henry Leung (University of Toronto)
    """
    dr = apogee_default_dr(dr=dr)

    if location is None:  # for DR16=<, location is expected to be none because field is used
        global _ALLSTAR_TEMP
        if not str(f'dr{dr}') in _ALLSTAR_TEMP:
            _ALLSTAR_TEMP[f'dr{dr}'] = fits.getdata(allstar(dr=dr))
        if telescope is None:
            matched_idx = [np.nonzero(_ALLSTAR_TEMP[f'dr{dr}']['APOGEE_ID'] == apogee)[0]][0]
        else:
            matched_idx = [np.nonzero([(_ALLSTAR_TEMP[f'dr{dr}']['APOGEE_ID'] == apogee) &
                                       (_ALLSTAR_TEMP[f'dr{dr}']['TELESCOPE'] == telescope)])][0][1]
        if len(matched_idx) == 0:
            raise ValueError(f"No entry found in allstar DR{dr} met with your requirement!!")

        location = _ALLSTAR_TEMP[f'dr{dr}']['LOCATION_ID'][matched_idx][0]
        field = _ALLSTAR_TEMP[f'dr{dr}']['FIELD'][matched_idx][0]
        telescope = _ALLSTAR_TEMP[f'dr{dr}']['TELESCOPE'][matched_idx][0]

    if dr == 13:
        reduce_prefix = 'r6'
        str1 = f'https://data.sdss.org/sas/dr{dr}/apogee/spectro/redux/{reduce_prefix}/stars/apo25m/{location}/'
        if commission:
github pyspeckit / pyspeckit / pyspeckit / spectrum / models / radex_modelgrid.py View on Github external
A modelfunc must be specified.  Model functions should take an xarr and
        a series of keyword arguments corresponding to the line parameters
        (Tex, tau, xoff_v, and width (gaussian sigma, not FWHM))
        """

        self.modelfunc = modelfunc
        if self.modelfunc is None:
            raise ValueError("Must specify a spectral model function.  See class help for form.")

        if texgrid is None and taugrid is None:
            if path_to_texgrid == '' or path_to_taugrid=='':
                raise IOError("Must specify model grids to use.")
            else:
                self.taugrid = [pyfits.getdata(path_to_taugrid)]
                self.texgrid = [pyfits.getdata(path_to_texgrid)]
                hdr = pyfits.getheader(path_to_taugrid)
                self.yinds,self.xinds = np.indices(self.taugrid[0].shape[1:])
                self.densityarr = (xinds+hdr['CRPIX1']-1)*hdr['CD1_1']+hdr['CRVAL1'] # log density
                self.columnarr  = (yinds+hdr['CRPIX2']-1)*hdr['CD2_2']+hdr['CRVAL2'] # log column
                self.minfreq = (4.8,)
                self.maxfreq = (5.0,)
        elif len(taugrid)==len(texgrid) and hdr is not None:
            self.minfreq,self.maxfreq,self.texgrid = zip(*texgrid)
            self.minfreq,self.maxfreq,self.taugrid = zip(*taugrid)
            self.yinds,self.xinds = np.indices(self.taugrid[0].shape[1:])
            self.densityarr = (xinds+hdr['CRPIX1']-1)*hdr['CD1_1']+hdr['CRVAL1'] # log density
            self.columnarr  = (yinds+hdr['CRPIX2']-1)*hdr['CD2_2']+hdr['CRVAL2'] # log column
        else:
            raise Exception
        
        # Convert X-units to frequency in GHz
github e-koch / FilFinder / examples / paper_figures / make_pipe_figures.py View on Github external
    @allow_rasterization
    def draw(self, renderer):
        for _c in self._collections:
            _c.draw(renderer)


def insert_rasterized_contour_plot(c, ax):
    collections = c.collections
    for _c in collections:
        _c.remove()
    cc = ListCollection(collections, rasterized=True)
    ax.add_artist(cc)
    return cc


img, hdr = fits.getdata('pipeCenterB59-350.fits', header=True)
beam = 24.9
img = img + 31.697

filfind = fil_finder_2D(img, hdr, beam, glob_thresh=20,
                        distance=145.)
filfind.create_mask()#size_thresh=400)
filfind.medskel()
filfind.analyze_skeletons()
filfind.exec_rht()
filfind.find_widths(verbose=False)

r = 460. / 145.
conv = np.sqrt(r ** 2. - 1) * \
    (beam / np.sqrt(8*np.log(2)) / (np.abs(hdr["CDELT2"]) * 3600.))

kernel = convolution.Gaussian2DKernel(conv)
github rabrahm / ceres / harps / harpspipe.py View on Github external
if (os.access(R_flat_co_fits,os.F_OK)):
        os.remove( R_flat_co_fits )
    
    hdu = pyfits.PrimaryHDU( P_co_B )
    hdu.writeto( P_co_B_fits )
    hdu = pyfits.PrimaryHDU( P_co_R )
    hdu.writeto( P_co_R_fits )
    hdu = pyfits.PrimaryHDU( B_flat_co )
    hdu.writeto( B_flat_co_fits )
    hdu = pyfits.PrimaryHDU( R_flat_co )
    hdu.writeto( R_flat_co_fits )

else:
    print "\t\tExtracted flat comparison spectra found, loading..."
    P_co_B    = pyfits.getdata( P_co_B_fits )
    P_co_R    = pyfits.getdata( P_co_R_fits )
    B_flat_co = pyfits.getdata( B_flat_co_fits )
    R_flat_co = pyfits.getdata( R_flat_co_fits )


# Normalize flat field spectra.
B_flat_ob_n,Bnorms = GLOBALutils.FlatNormalize_single( B_flat_ob, mid=2048)
R_flat_ob_n,Rnorms = GLOBALutils.FlatNormalize_single( R_flat_ob, mid=2048)

print '\n\tExtraction of ThAr calibration frames:'
# Extract all ThAr files
for fsim in ThAr_ref:
    print "\t\tWorking on ThAr+Ne file ", fsim, "..."
    hthar = pyfits.open( fsim )
    dtharB = harpsutils.OverscanTrim( hthar[1].data ) - MasterBias[:,:,0]
    dtharR = harpsutils.OverscanTrim( hthar[2].data ) - MasterBias[:,:,1]
    print 'one'
github gammapy / gammapy / examples / wip_galprop.py View on Github external
def make_int_flux_image(self, emin=1e6, emax=1e20):
        """Make integral flux for an energy band"""
        for ii in range(len(components)):
            in_file = filename(self.tag, ii, 'cube')
            out_file = filename(self.tag, ii, 'image')
            logging.info('---> Processing {0}'.format(components[ii]))
            fluxes = fits.getdata(in_file)
            image = cube_integrate(fluxes, self.energy, emin, emax)
            fits.writeto(out_file, image, clobber=self.clobber)
github pyspeckit / pyspeckit / pyspeckit / wrappers / n2hp_wrapper.py View on Github external
def make_n2hp_fitter(path_to_radex='/Users/adam/work/n2hp/',
        fileprefix='1-2_T=5to55_lvg'):
    """
    Create a n2hp fitter using RADEX data cubes.  The following files must exist::

        path_to_radex+fileprefix+'_tex1.fits'
        path_to_radex+fileprefix+'_tau1.fits'
        path_to_radex+fileprefix+'_tex2.fits'
        path_to_radex+fileprefix+'_tau2.fits'

    e.g. `/Users/adam/work/n2hp/1-2_T=5to55_lvg_tau1.fits`
    """

    # create the n2hp Radex fitter
    # This step cannot be easily generalized: the user needs to read in their own grids
    texgrid1 = pyfits.getdata(path_to_radex+fileprefix+'_tex1.fits')
    taugrid1 = pyfits.getdata(path_to_radex+fileprefix+'_tau1.fits')
    texgrid2 = pyfits.getdata(path_to_radex+fileprefix+'_tex2.fits')
    taugrid2 = pyfits.getdata(path_to_radex+fileprefix+'_tau2.fits')
    hdr    = pyfits.getheader(path_to_radex+fileprefix+'_tau2.fits')

    # this deserves a lot of explanation:
    # models.n2hp.n2hp_radex is the MODEL that we are going to fit
    # models.model.SpectralModel is a wrapper to deal with parinfo, multiple peaks,
    # and annotations
    # all of the parameters after the first are passed to the model function 
    n2hp_radex_fitter = models.model.SpectralModel(
            models.n2hp.n2hp_radex, 4,
            parnames=['density','column','center','width'], 
            parvalues=[4,12,0,1],
            parlimited=[(True,True), (True,True), (False,False), (True,False)], 
            parlimits=[(1,8), (11,16), (0,0), (0,0)],
github rabrahm / ceres / harps / harpspipe.py View on Github external
hdu = GLOBALutils.update_header(hdu,'RESOL', RESI)
        hdu = GLOBALutils.update_header(hdu,'PIPELINE', 'CERES')
        hdu = GLOBALutils.update_header(hdu,'XC_MIN', XC_min)
        hdu = GLOBALutils.update_header(hdu,'BJD_OUT', bjd_out)
    
        line_out = "%-15s %18.8f %9.4f %7.4f %9.3f %5.3f     harps   ceres   %8d %6d %5.2f %5.2f %5.1f %4.2f %5.2f %6.1f %4d %s\n"%\
                      (obname, bjd_out, RV, RVerr2, BS, BSerr, RESI, T_eff_epoch, logg_epoch, Z_epoch, vsini_epoch, XC_min, disp_epoch,\
		       TEXP, SNR_5130_R, ccf_pdf)
        f_res.write(line_out)
        if (os.access( dirout + fout,os.F_OK)):
            os.remove( dirout + fout)
        hdu.writeto( dirout + fout )

    else:
        print "\t\tReading spectral file from", fout
        spec = pyfits.getdata( fout )

f_res.close()