How to use the asrtoolkit.file_utils.name_cleaners.sanitize_hyphens function in asrtoolkit

To help you get started, we’ve selected a few asrtoolkit examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github finos / greenkey-asrtoolkit / asrtoolkit / data_structures / time_aligned_text.py View on Github external
def write(self, file_name):
        """
        Output to file using segment-specific __str__ function
        """
        file_extension = file_name.split(
            ".")[-1] if "." in file_name else "stm"

        file_name = sanitize_hyphens(file_name)

        data_handler = importlib.import_module(
            "asrtoolkit.data_handlers.{:}".format(file_extension))
        with open(file_name, "w", encoding="utf-8") as f:
            f.write(data_handler.header())
            f.writelines(
                data_handler.separator.join(
                    seg.__str__(data_handler) for seg in self.segments))
            f.write(data_handler.footer())

        # return back new object in case we are updating a list in place
        return time_aligned_text(file_name)
github finos / greenkey-asrtoolkit / asrtoolkit / data_structures / audio_file.py View on Github external
def prepare_for_training(self, file_name, sample_rate=16000):
        """
        Converts to single channel (from channel 1) audio file
        in SPH file format
        Returns audio_file object on success, else None
        """
        if file_name.split(".")[-1] != "sph":
            LOGGER.warning(
                "Forcing training data to use SPH file format for %s",
                file_name)
            file_name = strip_extension(file_name) + ".sph"

        file_name = sanitize_hyphens(file_name)

        # return None if error code given, otherwise return audio_file object
        output_file = (audio_file(file_name) if not subprocess.call(
            "sox -V1 {} {} rate {} remix -".format(self.location, file_name,
                                                   sample_rate),
            shell=True,
        ) else None)

        return output_file