How to use the arviz.plots.backends.matplotlib.backend_show function in arviz

To help you get started, we’ve selected a few arviz examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github arviz-devs / arviz / arviz / plots / backends / matplotlib / elpdplot.py View on Github external
ax[j, i].tick_params(labelsize=xt_labelsize)
                ax[j, i].set_title(
                    "{} - {}".format(models[i], models[j + 1]), fontsize=titlesize, wrap=True
                )
        if xlabels:
            set_xticklabels(ax[-1, -1], coord_labels)
            fig.autofmt_xdate()
            fig.tight_layout()
        if legend:
            ncols = len(handles) // 6 + 1
            ax[0, 1].legend(
                handles=handles, ncol=ncols, title=color, bbox_to_anchor=(0, 1), loc="upper left"
            )

    if backend_show(show):
        plt.show()

    return ax
github arviz-devs / arviz / arviz / plots / backends / matplotlib / mcseplot.py View on Github external
r"Value $\pm$ MCSE for quantiles" if errorbar else "MCSE for quantiles",
            fontsize=ax_labelsize,
            wrap=True,
        )
        ax_.set_xlim(0, 1)
        if rug:
            ax_.yaxis.get_major_locator().set_params(nbins="auto", steps=[1, 2, 5, 10])
            y_min, y_max = ax_.get_ylim()
            yticks = ax_.get_yticks()
            yticks = yticks[(yticks >= y_min) & (yticks < y_max)]
            ax_.set_yticks(yticks)
            ax_.set_yticklabels(["{:.3g}".format(ytick) for ytick in yticks])
        elif not errorbar:
            ax_.set_ylim(bottom=0)

    if backend_show(show):
        plt.show()

    return ax
github arviz-devs / arviz / arviz / plots / backends / matplotlib / ppcplot.py View on Github external
ax_i.set_yticks([])

        if var_name != pp_var_name:
            xlabel = "{} / {}".format(var_name, pp_var_name)
        else:
            xlabel = var_name
        ax_i.set_xlabel(make_label(xlabel, selection), fontsize=ax_labelsize)

        if legend:
            if i == 0:
                ax_i.legend(fontsize=xt_labelsize * 0.75)
            else:
                ax_i.legend([])

    if backend_show(show):
        plt.show()

    if animated:
        ani = animation.FuncAnimation(
            fig, animate, np.arange(0, num_pp_samples), init_func=init, **animation_kwargs
        )
        return axes, ani
    else:
        return axes
github arviz-devs / arviz / arviz / plots / backends / matplotlib / jointplot.py View on Github external
axjoin.scatter(x, y, **joint_kwargs)
    elif kind == "kde":
        plot_kde(x, y, contour=contour, fill_last=fill_last, ax=axjoin, **joint_kwargs)
    else:
        if gridsize == "auto":
            gridsize = int(len(x) ** 0.35)
        axjoin.hexbin(x, y, mincnt=1, gridsize=gridsize, **joint_kwargs)
        axjoin.grid(False)

    for val, ax_, rotate in ((x, ax_hist_x, False), (y, ax_hist_y, True)):
        plot_dist(val, textsize=xt_labelsize, rotated=rotate, ax=ax_, **marginal_kwargs)

    ax_hist_x.set_xlim(axjoin.get_xlim())
    ax_hist_y.set_ylim(axjoin.get_ylim())

    if backend_show(show):
        plt.show()

    return np.array([axjoin, ax_hist_x, ax_hist_y])
github arviz-devs / arviz / arviz / plots / backends / matplotlib / distplot.py View on Github external
legend=legend,
            fill_last=fill_last,
            textsize=textsize,
            plot_kwargs=plot_kwargs,
            fill_kwargs=fill_kwargs,
            rug_kwargs=rug_kwargs,
            contour_kwargs=contour_kwargs,
            contourf_kwargs=contourf_kwargs,
            pcolormesh_kwargs=pcolormesh_kwargs,
            ax=ax,
            backend="matplotlib",
            backend_kwargs=backend_kwargs,
            show=show,
        )

    if backend_show(show):
        plt.show()

    return ax
github arviz-devs / arviz / arviz / plots / backends / matplotlib / forestplot.py View on Github external
if loc in ["left", "right"]:
                spine.set_visible(False)

        if len(plot_handler.data) > 1:
            plot_handler.make_bands(ax_)

    labels, ticks = plot_handler.labels_and_ticks()
    axes[0].set_yticks(ticks)
    axes[0].set_yticklabels(labels)
    all_plotters = list(plot_handler.plotters.values())
    y_max = plot_handler.y_max() - all_plotters[-1].group_offset
    if kind == "ridgeplot":  # space at the top
        y_max += ridgeplot_overlap
    axes[0].set_ylim(-all_plotters[0].group_offset, y_max)

    if backend_show(show):
        plt.show()

    return axes
github arviz-devs / arviz / arviz / plots / backends / matplotlib / loopitplot.py View on Github external
if use_hpd:
            plot_hpd(x_vals, unif_densities, **hpd_kwargs)
        else:
            for idx in range(n_unif):
                unif_density, _, _ = _fast_kde(unif[idx, :], xmin=0, xmax=1)
                ax.plot(x_vals, unif_density, **plot_unif_kwargs)
        ax.plot(x_vals, loo_pit_kde, **plot_kwargs)

    ax.tick_params(labelsize=xt_labelsize)
    if legend:
        if not (use_hpd or (ecdf and ecdf_fill)):
            label = "{:.3g}% credible interval".format(credible_interval) if ecdf else "Uniform"
            ax.plot([], label=label, **plot_unif_kwargs)
        ax.legend()

    if backend_show(show):
        plt.show()

    return ax
github arviz-devs / arviz / arviz / plots / backends / matplotlib / kdeplot.py View on Github external
g_s = complex(gridsize[0])
        x_x, y_y = np.mgrid[xmin:xmax:g_s, ymin:ymax:g_s]

        ax.grid(False)
        ax.set_xlim(xmin, xmax)
        ax.set_ylim(ymin, ymax)
        if contour:
            qcfs = ax.contourf(x_x, y_y, density, antialiased=True, **contourf_kwargs)
            qcs = ax.contour(x_x, y_y, density, **contour_kwargs)
            if not fill_last:
                qcfs.collections[0].set_alpha(0)
                qcs.collections[0].set_alpha(0)
        else:
            ax.pcolormesh(x_x, y_y, density, **pcolormesh_kwargs)

    if backend_show(show):
        plt.show()

    return ax
github arviz-devs / arviz / arviz / plots / backends / matplotlib / rankplot.py View on Github external
for idx, counts in enumerate(all_counts):
                ax.plot(bin_ary, counts, "o", color=colors[idx])
                ax.vlines(bin_ary, ymin, counts, lw=2, color=colors[idx])
            ax.set_ylim(0, all_counts.mean() * 2)
            if ref_line:
                ax.axhline(y=all_counts.mean(), linestyle="--", color="k")

        if labels:
            ax.set_xlabel("Rank (all chains)", fontsize=ax_labelsize)
            ax.set_yticks(y_ticks)
            ax.set_yticklabels(np.arange(len(y_ticks)))
            ax.set_title(make_label(var_name, selection), fontsize=titlesize)
        else:
            ax.set_yticks([])

    if backend_show(show):
        plt.show()

    return axes
github arviz-devs / arviz / arviz / plots / backends / matplotlib / traceplot.py View on Github external
axes[idx, 1].hlines(
                line_values, *xlims[1], colors="black", linewidth=1.5, alpha=trace_kwargs["alpha"]
            )
        axes[idx, 0].set_ylim(bottom=0, top=ylims[0][1])
        axes[idx, 1].set_xlim(left=data.draw.min(), right=data.draw.max())
        axes[idx, 1].set_ylim(*ylims[1])
    if legend:
        handles = [
            Line2D([], [], color=color, label=chain_id)
            for chain_id, color in zip(data.chain.values, colors)
        ]
        if combined:
            handles.insert(0, Line2D([], [], color=colors[-1], label="combined"))
        axes[0, 1].legend(handles=handles, title="chain")

    if backend_show(show):
        plt.show()

    return axes