Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_tps_fit_minimize_func():
# Parameters
frame_rate = 100
n_frames = 1000
slopes = numpy.random.random((1000, 104))
tps, tps_err = turbulence.calc_slope_temporalps(slopes)
args = [20., 20., 1.]
t_axis = turbulence.get_tps_time_axis(frame_rate, n_frames)
D = 0.5
plot = False
# Test code
V, f_noise, A = args
return test_tps_fit()
A (float): Initial Guess of
"""
# Parameters
frame_rate = 100
n_frames = 1000
slopes = numpy.random.random((1000, 104))
tps, error_spectra = turbulence.calc_slope_temporalps(slopes)
t_axis_data = turbulence.get_tps_time_axis(frame_rate, n_frames)
D = 0.5
V = 20
f_noise = t_axis_data[-2]
A = 1
tps_err = None
plot = False
t_values = turbulence.get_tps_time_axis(frame_rate, n_frames)
# Start testing function
f0 = 0.3 * V/D
if f0f_noise or f_noise>t_axis_data.max():
return 10**99
tps_tt_indices = numpy.where((t_axis_data0))[0]
tt_t_data = t_axis_data[tps_tt_indices]
tt_fit = 10**A * tt_t_data**(-2./3)
# get scaling for next part of distribution so it matches up at cutof freq.
tps_ho_indices = numpy.where((t_axis_data>f0) & (t_axis_data
def test_get_tps_time_axis():
frame_rate = 100
n_frames = 1000
t_values = turbulence.get_tps_time_axis(frame_rate, n_frames)
assert len(t_values) == 500