Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self, model=None, **kwargs):
self.model = orange.MajorityLearner() if model is None else model
else:
subgen=orange.SubsetsGenerator_minMaxSize(min = self.boundsize[0], max = self.boundsize[1])
else:
subgen=orange.SubsetsGenerator_constSize(B = 2)
if type=="auto":
im=orange.IMBySorting(data, [])
if im.fuzzy():
type="error"
else:
type="complexity"
inducer=StructureInducer(removeDuplicates = 1,
redundancyRemover = AttributeRedundanciesRemover(),
learnerForUnknown = orange.MajorityLearner()
)
if type=="complexity":
inducer.featureInducer = FeatureByMinComplexity()
return inducer(data, weight)
elif type=="error":
ms=getattr(self, "m", orange.frange(0.1)+orange.frange(1.2, 3.0, 0.2)+orange.frange(4.0, 10.0, 1.0))
inducer.redundancyRemover.inducer=inducer.featureInducer = FeatureByMinError()
# it's the same object for redundancy remover and the real inducer, so we can tune just one
return orngWrap.Tune1Parameter(
parameter = "featureInducer.m",
values = ms,
object = inducer,
# Description: Builds regression models from data and outputs predictions for first five instances
# Category: modelling
# Uses: housing
# Classes: MakeRandomIndices2, MajorityLearner, orngTree.TreeLearner, orange.kNNLearner
# Referenced: regression.htm
import orange, orngTree, orngTest, orngStat
data = orange.ExampleTable("housing.tab")
selection = orange.MakeRandomIndices2(data, 0.5)
train_data = data.select(selection, 0)
test_data = data.select(selection, 1)
maj = orange.MajorityLearner(train_data)
maj.name = "default"
rt = orngTree.TreeLearner(train_data, measure="retis", mForPruning=2, minExamples=20)
rt.name = "reg. tree"
k = 5
knn = orange.kNNLearner(train_data, k=k)
knn.name = "k-NN (k=%i)" % k
regressors = [maj, rt, knn]
print "\n%10s " % "original",
for r in regressors:
print "%10s " % r.name,
print
# Description: Builds regression models from data and outputs predictions for first five instances
# Category: modelling
# Uses: housing
# Classes: MakeRandomIndices2, MajorityLearner, orngTree.TreeLearner, orange.kNNLearner
# Referenced: regression.htm
import orange, orngTree, orngTest, orngStat
data = orange.ExampleTable("../datasets/housing.tab")
selection = orange.MakeRandomIndices2(data, 0.5)
train_data = data.select(selection, 0)
test_data = data.select(selection, 1)
maj = orange.MajorityLearner(train_data)
maj.name = "default"
rt = orngTree.TreeLearner(train_data, measure="retis", mForPruning=2, minExamples=20)
rt.name = "reg. tree"
k = 5
knn = orange.kNNLearner(train_data, k=k)
knn.name = "k-NN (k=%i)" % k
regressors = [maj, rt, knn]
print "\n%10s " % "original",
for r in regressors:
print "%10s " % r.name,
print
# continuization (replaces discrete with continuous attributes)
continuizer = orange.DomainContinuizer()
continuizer.multinomialTreatment = continuizer.FrequentIsBase
continuizer.zeroBased = True
domain0 = continuizer(data)
data = data.translate(domain0)
if self.stepwise and not self.stepwise_before:
use_attributes=stepwise(data,weight,add_sig=self.add_sig,remove_sig=self.remove_sig)
new_domain = orange.Domain(use_attributes, data.domain.classVar)
new_domain.addmetas(data.domain.getmetas())
data = orange.ExampleTable(new_domain, data)
# missing values handling (impute missing)
imputer = orange.ImputerConstructor_model()
imputer.learnerContinuous = orange.MajorityLearner()
imputer.learnerDiscrete = orange.MajorityLearner()
imputer = imputer(data)
data = imputer(data)
# convertion to numpy
A, y, w = data.toNumpy() # weights ??
if A==None:
n = len(data)
m = 0
else:
n, m = numpy.shape(A)
if self.beta0 == True:
if A==None:
X = numpy.ones([len(data),1])
else:
def xtestChinaEuropeSimpler():
import orange, orngTree # @UnusedImport @UnresolvedImport
trainData = orange.ExampleTable('ismir2011_fb_folkTrain.tab')
testData = orange.ExampleTable('ismir2011_fb_folkTest.tab')
majClassifier = orange.MajorityLearner(trainData)
knnClassifier = orange.kNNLearner(trainData)
majWrong = 0
knnWrong = 0
for testRow in testData:
majGuess = majClassifier(testRow)
knnGuess = knnClassifier(testRow)
realAnswer = testRow.getclass()
if majGuess != realAnswer:
majWrong += 1
if knnGuess != realAnswer:
knnWrong += 1
total = float(len(testData))
print (majWrong/total, knnWrong/total)
# Uses: housing
# Classes: orngTest.crossValidation, orngTree.TreeLearner, orange.kNNLearner, orngRegression.LinearRegressionLearner
# Referenced: regression.htm
import orange
import orngRegression
import orngTree
import orngStat, orngTest
data = orange.ExampleTable("housing")
# definition of learners (regressors)
lr = orngRegression.LinearRegressionLearner(name="lr")
rt = orngTree.TreeLearner(measure="retis", mForPruning=2,
minExamples=20, name="rt")
maj = orange.MajorityLearner(name="maj")
knn = orange.kNNLearner(k=10, name="knn")
learners = [maj, lr, rt, knn]
# evaluation and reporting of scores
results = orngTest.crossValidation(learners, data, folds=10)
scores = [("MSE", orngStat.MSE),
("RMSE", orngStat.RMSE),
("MAE", orngStat.MAE),
("RSE", orngStat.RSE),
("RRSE", orngStat.RRSE),
("RAE", orngStat.RAE),
("R2", orngStat.R2)]
print "Learner " + "".join(["%-7s" % s[0] for s in scores])
for i in range(len(learners)):
print "%-8s " % learners[i].name + "".join(["%6.3f " % s[1](results)[i] for s in scores])
def findArguments(self, example):
self.clearArguments()
if not self.graph.have_data or not self.graph.data_has_class or len(self.results) == 0:
if len(self.results) == 0: print 'To classify an example using VizRank you first have to evaluate some projections.'
return orange.MajorityLearner(self.graph.raw_data)(example, orange.GetBoth)
self.arguments = [[] for i in range(len(self.graph.data_domain.classVar.values))]
vals = [0.0 for i in range(len(self.arguments))]
if self.rankArgumentsByStrength == 1:
for index in range(min(len(self.results), self.argumentCount + 50)):
classValue, dist = self.computeClassificationForExample(index, example, kValue = len(self.graph.raw_data))
if classValue and dist:
for i in range(len(self.arguments)):
self.arguments[i].insert(self.getArgumentIndex(dist[i], i), (dist[i], dist, self.results[index][ATTR_LIST], index))
for i in range(len(self.arguments)):
arr = self.arguments[i]
arr.sort()
arr.reverse()
arr = arr[:self.argumentCount]
# Category: evaluation
# Uses: housing.tab
# Referenced: orngStat.htm
import orange
import orngRegression as r
import orngTree
import orngStat, orngTest
data = orange.ExampleTable("housing")
# definition of regressors
lr = r.LinearRegressionLearner(name="lr")
rt = orngTree.TreeLearner(measure="retis", mForPruning=2,
minExamples=20, name="rt")
maj = orange.MajorityLearner(name="maj")
knn = orange.kNNLearner(k=10, name="knn")
learners = [maj, rt, knn, lr]
# cross validation, selection of scores, report of results
results = orngTest.crossValidation(learners, data, folds=3)
scores = [("MSE", orngStat.MSE), ("RMSE", orngStat.RMSE),
("MAE", orngStat.MAE), ("RSE", orngStat.RSE),
("RRSE", orngStat.RRSE), ("RAE", orngStat.RAE),
("R2", orngStat.R2)]
print "Learner " + "".join(["%-8s" % s[0] for s in scores])
for i in range(len(learners)):
print "%-8s " % learners[i].name + \
"".join(["%7.3f " % s[1](results)[i] for s in scores])
# Description: Bagging and boosting with k-nearest neighbors
# Category: modelling
# Uses: promoters.tab
# Classes: orngTest.crossValidation, orngEnsemble.BaggedLearner, orngEnsemble.BoostedLearner
# Referenced: o_ensemble.htm
import orange, orngTest, orngStat, orngEnsemble
data = orange.ExampleTable("promoters")
majority = orange.MajorityLearner()
majority.name = "default"
knn = orange.kNNLearner(k=11)
knn.name = "k-NN (k=11)"
bagged_knn = orngEnsemble.BaggedLearner(knn, t=10)
bagged_knn.name = "bagged k-NN"
boosted_knn = orngEnsemble.BoostedLearner(knn, t=10)
boosted_knn.name = "boosted k-NN"
learners = [majority, knn, bagged_knn, boosted_knn]
results = orngTest.crossValidation(learners, data, folds=10)
print " Learner CA Brier Score"
for i in range(len(learners)):
print ("%15s: %5.3f %5.3f") % (learners[i].name,
orngStat.CA(results)[i], orngStat.BrierScore(results)[i])