Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
return np.sin(np.pi * x[:, 0:1]) * np.exp(-x[:, 1:])
geom = dde.geometry.Interval(-1, 1)
timedomain = dde.geometry.TimeDomain(0, 1)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)
bc = dde.DirichletBC(geomtime, func, lambda _, on_boundary: on_boundary)
ic = dde.IC(geomtime, func, lambda _, on_initial: on_initial)
observe_x = np.vstack((np.linspace(-1, 1, num=10), np.full((10), 1))).T
ptset = dde.bc.PointSet(observe_x)
observe_y = dde.DirichletBC(
geomtime, ptset.values_to_func(func(observe_x)), lambda x, _: ptset.inside(x)
)
data = dde.data.TimePDE(
geomtime,
1,
pde,
[bc, ic, observe_y],
num_domain=40,
num_boundary=20,
num_initial=10,
anchors=observe_x,
func=func,
num_test=10000,
)
layer_size = [2] + [32] * 3 + [1]
activation = "tanh"
initializer = "Glorot uniform"
net = dde.maps.FNN(layer_size, activation, initializer)
dy_t
- dy_xx
+ tf.exp(-x[:, 1:])
* (tf.sin(np.pi * x[:, 0:1]) - np.pi ** 2 * tf.sin(np.pi * x[:, 0:1]))
)
def func(x):
return np.sin(np.pi * x[:, 0:1]) * np.exp(-x[:, 1:])
geom = dde.geometry.Interval(-1, 1)
timedomain = dde.geometry.TimeDomain(0, 1)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)
bc = dde.DirichletBC(geomtime, func, lambda _, on_boundary: on_boundary)
ic = dde.IC(geomtime, func, lambda _, on_initial: on_initial)
data = dde.data.TimePDE(
geomtime,
1,
pde,
[bc, ic],
num_domain=40,
num_boundary=20,
num_initial=10,
func=func,
num_test=10000,
)
layer_size = [2] + [32] * 3 + [1]
activation = "tanh"
initializer = "Glorot uniform"
net = dde.maps.FNN(layer_size, activation, initializer)
dy_t
- dy_xx
+ tf.exp(-x[:, 1:])
* (tf.sin(np.pi * x[:, 0:1]) - np.pi ** 2 * tf.sin(np.pi * x[:, 0:1]))
)
def func(x):
return np.sin(np.pi * x[:, 0:1]) * np.exp(-x[:, 1:])
geom = dde.geometry.Interval(-1, 1)
timedomain = dde.geometry.TimeDomain(0, 1)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)
bc = dde.DirichletBC(geomtime, func, lambda _, on_boundary: on_boundary)
ic = dde.IC(geomtime, func, lambda _, on_initial: on_initial)
data = dde.data.TimePDE(
geomtime, 1, pde, [bc, ic], num_domain=40, func=func, num_test=10000
)
layer_size = [2] + [32] * 3 + [1]
activation = "tanh"
initializer = "Glorot uniform"
net = dde.maps.FNN(layer_size, activation, initializer)
net.outputs_modify(
lambda x, y: x[:, 1:2] * (1 - x[:, 0:1] ** 2) * y + tf.sin(np.pi * x[:, 0:1])
)
model = dde.Model(data, net)
model.compile("adam", lr=0.001, metrics=["l2 relative error"])
losshistory, train_state = model.train(epochs=10000)