How to use the numjs.mean function in numjs

To help you get started, we’ve selected a few numjs examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github eimg / burmese-text-classifier / train.js View on Github external
var layer_0 = X;
        var layer_1 = nj.sigmoid(nj.dot(layer_0, synapse_0));

        if(dropout) {
            // I don't understand what this does yet
            // layer_1 *= nj.random.binomial([np.ones((len(X),hidden_neurons))], 1-dropout_percent)[0] * (1.0/(1-dropout_percent));
        }

        var layer_2 = nj.sigmoid(nj.dot(layer_1, synapse_1));
        var layer_2_error = y.subtract(layer_2);

        if( (j % 10000) == 0 && j > 5000 ) {
            // if this 10k iteration's error is greater than
            // the last iteration, break out
            if (nj.mean(nj.abs(layer_2_error)) < last_mean_error) {
                console.log("delta after " + j + " iterations:" + nj.mean(nj.abs(layer_2_error)) );
                last_mean_error = nj.mean(nj.abs(layer_2_error));
            } else {
                console.log ("break:" + nj.mean(nj.abs(layer_2_error)) + ">" + last_mean_error );
                break;
            }
        }

        var layer_2_delta = layer_2_error.multiply( curve(layer_2) );
        var layer_1_error = layer_2_delta.dot(synapse_1.T);
        var layer_1_delta = layer_1_error.multiply( curve(layer_1) );

        var synapse_1_weight_update = (layer_1.T.dot(layer_2_delta));
        var synapse_0_weight_update = (layer_0.T.dot(layer_1_delta));

        if(j > 0) {
            synapse_0_direction_count = synapse_0_direction_count.add(