How to use image-q - 10 common examples

To help you get started, we’ve selected a few image-q examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github jhuckaby / canvas-plus / lib / filter / quantize.js View on Github external
// create chosen palette quantizer (see classes implementing `iq.palette.IPaletteQuantizer`) 
		var paletteQuantizer = new iq.palette[opts.quantizer](distanceCalculator, targetColors);
		
		// feed out pointContainer filled with image to paletteQuantizer
		paletteQuantizer.sample(pointContainer);

		// generate palette
		var palette = paletteQuantizer.quantize();

		// get color array
		var iq_colors = palette.getPointContainer().getPointArray();
		
		// create image quantizer (see classes implementing `iq.image.IImageDitherer`)
		var imageDitherer = opts.dither ? 
			(new iq.image.ErrorDiffusionArray(distanceCalculator, iq.image.ErrorDiffusionArrayKernel[opts.ditherType])) : 
			(new iq.image.NearestColor(distanceCalculator));
		
		// apply palette to image
		var resultPointContainer = imageDitherer.quantize(pointContainer, palette);

		// get pixel array
		var iq_pixels = resultPointContainer.getPointArray();
		
		// convert pixels to array of palette indexes
		var palette_offset = 0;
		var palette_data = new Uint8Array( iq_colors.length * 3 );
		var color_hash = {};
		var iq_color = null;
		
		// build palette structure and color hash table
		for (var idx = 0, len = iq_colors.length; idx < len; idx++) {
			iq_color = iq_colors[idx];
github jhuckaby / canvas-plus / lib / filter / quantize.js View on Github external
// create chosen palette quantizer (see classes implementing `iq.palette.IPaletteQuantizer`) 
		var paletteQuantizer = new iq.palette[opts.quantizer](distanceCalculator, targetColors);
		
		// feed out pointContainer filled with image to paletteQuantizer
		paletteQuantizer.sample(pointContainer);

		// generate palette
		var palette = paletteQuantizer.quantize();

		// get color array
		var iq_colors = palette.getPointContainer().getPointArray();
		
		// create image quantizer (see classes implementing `iq.image.IImageDitherer`)
		var imageDitherer = opts.dither ? 
			(new iq.image.ErrorDiffusionArray(distanceCalculator, iq.image.ErrorDiffusionArrayKernel[opts.ditherType])) : 
			(new iq.image.NearestColor(distanceCalculator));
		
		// apply palette to image
		var resultPointContainer = imageDitherer.quantize(pointContainer, palette);

		// get pixel array
		var iq_pixels = resultPointContainer.getPointArray();
		
		// convert pixels to array of palette indexes
		var palette_offset = 0;
		var palette_data = new Uint8Array( iq_colors.length * 3 );
		var color_hash = {};
		var iq_color = null;
		
		// build palette structure and color hash table
		for (var idx = 0, len = iq_colors.length; idx < len; idx++) {
github jhuckaby / canvas-plus / lib / filter / quantize.js View on Github external
var imgData = this.context.getImageData(0, 0, width, height);
		
		// desired colors number
		var targetColors = parseInt( opts.colors || 0 );
		
		if (!targetColors || isNaN(targetColors) || (targetColors < 2) || (targetColors > 256)) {
			return this.doError('quantize', "Invalid palette size: " + targetColors);
		}
		
		// create pointContainer and fill it with image
		var pointContainer = iq.utils.PointContainer.fromImageData( imgData );
		
		// create chosen distance calculator (see classes inherited from `iq.distance.AbstractDistanceCalculator`)
		var distanceCalculator = opts.alpha ? 
			(new iq.distance.EuclideanRgbQuantWithAlpha()) : 
			(new iq.distance.EuclideanRgbQuantWOAlpha());
		
		// create chosen palette quantizer (see classes implementing `iq.palette.IPaletteQuantizer`) 
		var paletteQuantizer = new iq.palette[opts.quantizer](distanceCalculator, targetColors);
		
		// feed out pointContainer filled with image to paletteQuantizer
		paletteQuantizer.sample(pointContainer);

		// generate palette
		var palette = paletteQuantizer.quantize();

		// get color array
		var iq_colors = palette.getPointContainer().getPointArray();
		
		// create image quantizer (see classes implementing `iq.image.IImageDitherer`)
		var imageDitherer = opts.dither ? 
			(new iq.image.ErrorDiffusionArray(distanceCalculator, iq.image.ErrorDiffusionArrayKernel[opts.ditherType])) :
github jhuckaby / canvas-plus / lib / filter / quantize.js View on Github external
var targetColors = parseInt( opts.colors || 0 );
		
		if (!targetColors || isNaN(targetColors) || (targetColors < 2) || (targetColors > 256)) {
			return this.doError('quantize', "Invalid palette size: " + targetColors);
		}
		
		// create pointContainer and fill it with image
		var pointContainer = iq.utils.PointContainer.fromImageData( imgData );
		
		// create chosen distance calculator (see classes inherited from `iq.distance.AbstractDistanceCalculator`)
		var distanceCalculator = opts.alpha ? 
			(new iq.distance.EuclideanRgbQuantWithAlpha()) : 
			(new iq.distance.EuclideanRgbQuantWOAlpha());
		
		// create chosen palette quantizer (see classes implementing `iq.palette.IPaletteQuantizer`) 
		var paletteQuantizer = new iq.palette[opts.quantizer](distanceCalculator, targetColors);
		
		// feed out pointContainer filled with image to paletteQuantizer
		paletteQuantizer.sample(pointContainer);

		// generate palette
		var palette = paletteQuantizer.quantize();

		// get color array
		var iq_colors = palette.getPointContainer().getPointArray();
		
		// create image quantizer (see classes implementing `iq.image.IImageDitherer`)
		var imageDitherer = opts.dither ? 
			(new iq.image.ErrorDiffusionArray(distanceCalculator, iq.image.ErrorDiffusionArrayKernel[opts.ditherType])) : 
			(new iq.image.NearestColor(distanceCalculator));
		
		// apply palette to image
github jhuckaby / canvas-plus / lib / filter / quantize.js View on Github external
var num_pixels = width * height;
		
		this.logDebug(6, "Quantizing image", { colors: opts.colors, dither: opts.dither, width: width, height: height, pixels: num_pixels } );
		
		// get rgba pixels from canvas
		var imgData = this.context.getImageData(0, 0, width, height);
		
		// desired colors number
		var targetColors = parseInt( opts.colors || 0 );
		
		if (!targetColors || isNaN(targetColors) || (targetColors < 2) || (targetColors > 256)) {
			return this.doError('quantize', "Invalid palette size: " + targetColors);
		}
		
		// create pointContainer and fill it with image
		var pointContainer = iq.utils.PointContainer.fromImageData( imgData );
		
		// create chosen distance calculator (see classes inherited from `iq.distance.AbstractDistanceCalculator`)
		var distanceCalculator = opts.alpha ? 
			(new iq.distance.EuclideanRgbQuantWithAlpha()) : 
			(new iq.distance.EuclideanRgbQuantWOAlpha());
		
		// create chosen palette quantizer (see classes implementing `iq.palette.IPaletteQuantizer`) 
		var paletteQuantizer = new iq.palette[opts.quantizer](distanceCalculator, targetColors);
		
		// feed out pointContainer filled with image to paletteQuantizer
		paletteQuantizer.sample(pointContainer);

		// generate palette
		var palette = paletteQuantizer.quantize();

		// get color array
github jtlapp / gifwrap / src / gifutil.js View on Github external
}
        if (dither.minimumColorDistanceToDither === undefined) {
            dither.minimumColorDistanceToDither = 0;
        }
        if (dither.calculateErrorLikeGIMP === undefined) {
            dither.calculateErrorLikeGIMP = false;
        }
    }

    const distCalculator = new ImageQ.distance.Euclidean();
    const quantizer = new ImageQ.palette[method](distCalculator, maxColorIndexes, modifier);
    let imageMaker;
    if (dither) {
        imageMaker = new ImageQ.image.ErrorDiffusionArray(
            distCalculator,
            ImageQ.image.ErrorDiffusionArrayKernel[dither.ditherAlgorithm],
            dither.serpentine,
            dither.minimumColorDistanceToDither,
            dither.calculateErrorLikeGIMP
        );
    }
    else {
        imageMaker = new ImageQ.image.NearestColor(distCalculator);
    }

    const inputContainers = [];
    images.forEach(image => {

        const imageBuf = image.bitmap.data;
        const inputBuf = new ArrayBuffer(imageBuf.length);
        const inputArray = new Uint32Array(inputBuf);
        for (let bi = 0, ai = 0; bi < imageBuf.length; bi += 4, ++ai) {
github jtlapp / gifwrap / src / gifutil.js View on Github external
if (dither.serpentine === undefined) {
            dither.serpentine = true;
        }
        if (dither.minimumColorDistanceToDither === undefined) {
            dither.minimumColorDistanceToDither = 0;
        }
        if (dither.calculateErrorLikeGIMP === undefined) {
            dither.calculateErrorLikeGIMP = false;
        }
    }

    const distCalculator = new ImageQ.distance.Euclidean();
    const quantizer = new ImageQ.palette[method](distCalculator, maxColorIndexes, modifier);
    let imageMaker;
    if (dither) {
        imageMaker = new ImageQ.image.ErrorDiffusionArray(
            distCalculator,
            ImageQ.image.ErrorDiffusionArrayKernel[dither.ditherAlgorithm],
            dither.serpentine,
            dither.minimumColorDistanceToDither,
            dither.calculateErrorLikeGIMP
        );
    }
    else {
        imageMaker = new ImageQ.image.NearestColor(distCalculator);
    }

    const inputContainers = [];
    images.forEach(image => {

        const imageBuf = image.bitmap.data;
        const inputBuf = new ArrayBuffer(imageBuf.length);
github jtlapp / gifwrap / src / gifutil.js View on Github external
if (dither) {
        if (ditherAlgs.indexOf(dither.ditherAlgorithm) < 0) {
            throw new Error(`Invalid ditherAlgorithm '${dither.ditherAlgorithm}'`);
        }
        if (dither.serpentine === undefined) {
            dither.serpentine = true;
        }
        if (dither.minimumColorDistanceToDither === undefined) {
            dither.minimumColorDistanceToDither = 0;
        }
        if (dither.calculateErrorLikeGIMP === undefined) {
            dither.calculateErrorLikeGIMP = false;
        }
    }

    const distCalculator = new ImageQ.distance.Euclidean();
    const quantizer = new ImageQ.palette[method](distCalculator, maxColorIndexes, modifier);
    let imageMaker;
    if (dither) {
        imageMaker = new ImageQ.image.ErrorDiffusionArray(
            distCalculator,
            ImageQ.image.ErrorDiffusionArrayKernel[dither.ditherAlgorithm],
            dither.serpentine,
            dither.minimumColorDistanceToDither,
            dither.calculateErrorLikeGIMP
        );
    }
    else {
        imageMaker = new ImageQ.image.NearestColor(distCalculator);
    }

    const inputContainers = [];
github jtlapp / gifwrap / src / gifutil.js View on Github external
if (ditherAlgs.indexOf(dither.ditherAlgorithm) < 0) {
            throw new Error(`Invalid ditherAlgorithm '${dither.ditherAlgorithm}'`);
        }
        if (dither.serpentine === undefined) {
            dither.serpentine = true;
        }
        if (dither.minimumColorDistanceToDither === undefined) {
            dither.minimumColorDistanceToDither = 0;
        }
        if (dither.calculateErrorLikeGIMP === undefined) {
            dither.calculateErrorLikeGIMP = false;
        }
    }

    const distCalculator = new ImageQ.distance.Euclidean();
    const quantizer = new ImageQ.palette[method](distCalculator, maxColorIndexes, modifier);
    let imageMaker;
    if (dither) {
        imageMaker = new ImageQ.image.ErrorDiffusionArray(
            distCalculator,
            ImageQ.image.ErrorDiffusionArrayKernel[dither.ditherAlgorithm],
            dither.serpentine,
            dither.minimumColorDistanceToDither,
            dither.calculateErrorLikeGIMP
        );
    }
    else {
        imageMaker = new ImageQ.image.NearestColor(distCalculator);
    }

    const inputContainers = [];
    images.forEach(image => {
github jtlapp / gifwrap / src / gifutil.js View on Github external
images.forEach(image => {

        const imageBuf = image.bitmap.data;
        const inputBuf = new ArrayBuffer(imageBuf.length);
        const inputArray = new Uint32Array(inputBuf);
        for (let bi = 0, ai = 0; bi < imageBuf.length; bi += 4, ++ai) {
            inputArray[ai] = imageBuf.readUInt32LE(bi, true);
        }
        const inputContainer = ImageQ.utils.PointContainer.fromUint32Array(
                inputArray, image.bitmap.width, image.bitmap.height);
        quantizer.sample(inputContainer);
        inputContainers.push(inputContainer);
    });

image-q

Image Quantization Library in **TypeScript** *(MIT Licensed)*

MIT
Latest version published 3 years ago

Package Health Score

65 / 100
Full package analysis