How to use Augmentor - 10 common examples

To help you get started, we’ve selected a few Augmentor examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github xuannianz / keras-CenterNet / augmentor / misc.py View on Github external
def translate(image, boxes, prob=0.5, border_value=(128, 128, 128)):
    random_prob = np.random.uniform()
    if random_prob < (1 - prob):
        return image, boxes
    h, w = image.shape[:2]
    min_x1, min_y1 = np.min(boxes, axis=0)[:2]
    max_x2, max_y2 = np.max(boxes, axis=0)[2:]
    translation_matrix = translation_xy(min=(min(-min_x1 // 2, 0), min(-min_y1 // 2, 0)),
                                        max=(max((w - max_x2) // 2, 1), max((h - max_y2) // 2, 1)), prob=1.)
    translation_matrix = change_transform_origin(translation_matrix, (w / 2, h / 2))
    image = cv2.warpAffine(
        image,
        translation_matrix[:2, :],
        dsize=(w, h),
        flags=cv2.INTER_CUBIC,
        borderMode=cv2.BORDER_CONSTANT,
        borderValue=border_value,
    )
    new_boxes = []
    for box in boxes:
        x1, y1, x2, y2 = box
        points = translation_matrix.dot([
            [x1, x2, x1, x2],
            [y1, y2, y2, y1],
github xuannianz / EfficientDet / augmentor / misc.py View on Github external
def translate(image, boxes, prob=0.5, border_value=(128, 128, 128)):
    boxes = boxes.astype(np.float32)
    random_prob = np.random.uniform()
    if random_prob < (1 - prob):
        return image, boxes
    h, w = image.shape[:2]
    if boxes.shape[0] != 0:
        min_x1, min_y1 = np.min(boxes, axis=0)[:2]
        max_x2, max_y2 = np.max(boxes, axis=0)[2:]
        translation_matrix = translation_xy(min=(min(-min_x1 // 2, 0), min(-min_y1 // 2, 0)),
                                            max=(max((w - max_x2) // 2, 1), max((h - max_y2) // 2, 1)), prob=1.)
    else:
        translation_matrix = translation_xy(min=(min(-w // 8, 0), min(-h // 8, 0)),
                                            max=(max(w // 8, 1), max(h // 8, 1)))
    translation_matrix = change_transform_origin(translation_matrix, (w / 2, h / 2))
    image = cv2.warpAffine(
        image,
        translation_matrix[:2, :],
        dsize=(w, h),
        flags=cv2.INTER_CUBIC,
        borderMode=cv2.BORDER_CONSTANT,
        borderValue=border_value,
    )
    if boxes.shape[0] != 0:
        new_boxes = []
        for box in boxes:
            x1, y1, x2, y2 = box
            points = translation_matrix.dot([
                [x1, x2, x1, x2],
github xuannianz / EfficientDet / augmentor / misc.py View on Github external
def translate(image, boxes, prob=0.5, border_value=(128, 128, 128)):
    boxes = boxes.astype(np.float32)
    random_prob = np.random.uniform()
    if random_prob < (1 - prob):
        return image, boxes
    h, w = image.shape[:2]
    if boxes.shape[0] != 0:
        min_x1, min_y1 = np.min(boxes, axis=0)[:2]
        max_x2, max_y2 = np.max(boxes, axis=0)[2:]
        translation_matrix = translation_xy(min=(min(-min_x1 // 2, 0), min(-min_y1 // 2, 0)),
                                            max=(max((w - max_x2) // 2, 1), max((h - max_y2) // 2, 1)), prob=1.)
    else:
        translation_matrix = translation_xy(min=(min(-w // 8, 0), min(-h // 8, 0)),
                                            max=(max(w // 8, 1), max(h // 8, 1)))
    translation_matrix = change_transform_origin(translation_matrix, (w / 2, h / 2))
    image = cv2.warpAffine(
        image,
        translation_matrix[:2, :],
        dsize=(w, h),
        flags=cv2.INTER_CUBIC,
        borderMode=cv2.BORDER_CONSTANT,
        borderValue=border_value,
    )
    if boxes.shape[0] != 0:
        new_boxes = []
        for box in boxes:
github xuannianz / keras-CenterNet / augmentor / misc.py View on Github external
def translate(image, boxes, prob=0.5, border_value=(128, 128, 128)):
    random_prob = np.random.uniform()
    if random_prob < (1 - prob):
        return image, boxes
    h, w = image.shape[:2]
    min_x1, min_y1 = np.min(boxes, axis=0)[:2]
    max_x2, max_y2 = np.max(boxes, axis=0)[2:]
    translation_matrix = translation_xy(min=(min(-min_x1 // 2, 0), min(-min_y1 // 2, 0)),
                                        max=(max((w - max_x2) // 2, 1), max((h - max_y2) // 2, 1)), prob=1.)
    translation_matrix = change_transform_origin(translation_matrix, (w / 2, h / 2))
    image = cv2.warpAffine(
        image,
        translation_matrix[:2, :],
        dsize=(w, h),
        flags=cv2.INTER_CUBIC,
        borderMode=cv2.BORDER_CONSTANT,
        borderValue=border_value,
    )
    new_boxes = []
    for box in boxes:
        x1, y1, x2, y2 = box
        points = translation_matrix.dot([
            [x1, x2, x1, x2],
            [y1, y2, y2, y1],
            [1, 1, 1, 1],
        ])
github xuannianz / EfficientDet / augmentor / misc.py View on Github external
def translate(image, boxes, prob=0.5, border_value=(128, 128, 128)):
    boxes = boxes.astype(np.float32)
    random_prob = np.random.uniform()
    if random_prob < (1 - prob):
        return image, boxes
    h, w = image.shape[:2]
    if boxes.shape[0] != 0:
        min_x1, min_y1 = np.min(boxes, axis=0)[:2]
        max_x2, max_y2 = np.max(boxes, axis=0)[2:]
        translation_matrix = translation_xy(min=(min(-min_x1 // 2, 0), min(-min_y1 // 2, 0)),
                                            max=(max((w - max_x2) // 2, 1), max((h - max_y2) // 2, 1)), prob=1.)
    else:
        translation_matrix = translation_xy(min=(min(-w // 8, 0), min(-h // 8, 0)),
                                            max=(max(w // 8, 1), max(h // 8, 1)))
    translation_matrix = change_transform_origin(translation_matrix, (w / 2, h / 2))
    image = cv2.warpAffine(
        image,
        translation_matrix[:2, :],
        dsize=(w, h),
        flags=cv2.INTER_CUBIC,
        borderMode=cv2.BORDER_CONSTANT,
        borderValue=border_value,
    )
    if boxes.shape[0] != 0:
        new_boxes = []
        for box in boxes:
            x1, y1, x2, y2 = box
            points = translation_matrix.dot([
                [x1, x2, x1, x2],
                [y1, y2, y2, y1],
                [1, 1, 1, 1],
github xuannianz / keras-CenterNet / train.py View on Github external
def create_generators(args):
    """
    Create generators for training and validation.

    Args
        args: parseargs object containing configuration for generators.
        preprocess_image: Function that preprocesses an image for the network.
    """
    common_args = {
        'batch_size': args.batch_size,
        'input_size': args.input_size,
    }

    # create random transform generator for augmenting training data
    if args.random_transform:
        misc_effect = MiscEffect(border_value=0)
        visual_effect = VisualEffect()
    else:
        misc_effect = None
        visual_effect = None

    if args.dataset_type == 'pascal':
        from generators.pascal import PascalVocGenerator
        train_generator = PascalVocGenerator(
            args.pascal_path,
            'trainval',
            skip_difficult=True,
            multi_scale=args.multi_scale,
            misc_effect=misc_effect,
            visual_effect=visual_effect,
            **common_args
        )
github xuannianz / EfficientDet / train.py View on Github external
def create_generators(args):
    """
    Create generators for training and validation.

    Args
        args: parseargs object containing configuration for generators.
        preprocess_image: Function that preprocesses an image for the network.
    """
    common_args = {
        'batch_size': args.batch_size,
        'phi': args.phi,
    }

    # create random transform generator for augmenting training data
    if args.random_transform:
        misc_effect = MiscEffect()
        visual_effect = VisualEffect()
    else:
        misc_effect = None
        visual_effect = None

    if args.dataset_type == 'pascal':
        from generators.pascal import PascalVocGenerator
        train_generator = PascalVocGenerator(
            args.pascal_path,
            'trainval',
            skip_difficult=True,
            misc_effect=misc_effect,
            visual_effect=visual_effect,
            **common_args
        )
github xuannianz / keras-CenterNet / augmentor / misc.py View on Github external
image, boxes = crop(image, boxes, prob=self.crop_prob)
        image, boxes = translate(image, boxes, prob=self.translate_prob, border_value=self.border_value)
        return image, boxes


if __name__ == '__main__':
    from generators.pascal import PascalVocGenerator

    train_generator = PascalVocGenerator(
        'datasets/VOC0712',
        'trainval',
        skip_difficult=True,
        batch_size=1,
        shuffle_groups=False
    )
    misc_effect = MiscEffect()
    for i in range(train_generator.size()):
        image = train_generator.load_image(i)
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        annotations = train_generator.load_annotations(i)
        boxes = annotations['bboxes']
        for box in boxes.astype(np.int32):
            cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 0, 255), 2)
        src_image = image.copy()
        # cv2.namedWindow('src_image', cv2.WINDOW_NORMAL)
        cv2.imshow('src_image', src_image)
        # image, boxes = misc_effect(image, boxes)
        image, boxes = multi_scale(image, boxes)
        image = image.copy()
        for box in boxes.astype(np.int32):
            cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 1)
        # cv2.namedWindow('image', cv2.WINDOW_NORMAL)
github xuannianz / EfficientDet / augmentor / misc.py View on Github external
# train_generator = PascalVocGenerator(
    #     'datasets/VOC0712',
    #     'trainval',
    #     skip_difficult=True,
    #     batch_size=1,
    #     shuffle_groups=False
    # )
    from generators.coco import CocoGenerator

    train_generator = CocoGenerator(
        '/home/adam/.keras/datasets/coco/2017_118_5',
        'train2017',
        batch_size=1,
        shuffle_groups=False
    )
    misc_effect = MiscEffect()
    for i in range(train_generator.size()):
        image = train_generator.load_image(i)
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        annotations = train_generator.load_annotations(i)
        boxes = annotations['bboxes']
        for box in boxes.astype(np.int32):
            cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 0, 255), 2)
        src_image = image.copy()
        # cv2.namedWindow('src_image', cv2.WINDOW_NORMAL)
        cv2.imshow('src_image', src_image)
        image, boxes = misc_effect(image, boxes)
        # image, boxes = multi_scale(image, boxes)
        image = image.copy()
        for box in boxes.astype(np.int32):
            cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 1)
        # cv2.namedWindow('image', cv2.WINDOW_NORMAL)
github xuannianz / keras-CenterNet / generators / pascal.py View on Github external
"""
        filename = self.image_names[image_index] + '.xml'
        try:
            tree = ET.parse(os.path.join(self.data_dir, 'Annotations', filename))
            return self.__parse_annotations(tree.getroot())
        except ET.ParseError as e:
            raise_from(ValueError('invalid annotations file: {}: {}'.format(filename, e)), None)
        except ValueError as e:
            raise_from(ValueError('invalid annotations file: {}: {}'.format(filename, e)), None)


if __name__ == '__main__':
    from augmentor.misc import MiscEffect
    from augmentor.color import VisualEffect

    misc_effect = MiscEffect(border_value=0)
    visual_effect = VisualEffect()

    generator = PascalVocGenerator(
        'datasets/VOC0712',
        'trainval',
        skip_difficult=True,
        misc_effect=misc_effect,
        visual_effect=visual_effect,
        batch_size=1
    )
    for inputs, targets in generator:
        print('hi')

Augmentor

Image augmentation library for Machine Learning

MIT
Latest version published 2 years ago

Package Health Score

54 / 100
Full package analysis

Similar packages