
10 best practices to containerize Node.js web applications with Docker

1. Use deterministic docker base image tags
• Avoid FROM node

• Avoid FROM node:lts

• Avoid FROM node:14-alpine

Instead of generic image aliases, use SHA256 hashes or specific image
version tags for deterministic builds. For example:

• FROM node:lts-alpine@sha256:5c4c0dd64aa

• FROM node:14.2.0-alpine3.11

2. Install only production dependencies
Avoid pulling devDependencies and non-deterministic
package install like the ones below:

• Avoid RUN npm install
• Avoid RUN yarn install
• Avoid RUN npm ci

Instead, ensure you are installing only production
dependencies in a reproducible way:

• RUN npm ci --only=production

3. Optimize Node.js apps for production
Some Node.js libraries and frameworks will only enable
production-related optimization if they detect that the
NODE_ENV env var set to production:

• ENV NODE_ENV production

4. Don’t run Node.js apps as root
Docker defaults to running the process in the container as the
root user, which is a precarious security practice. Use a low
privileged user and proper filesystem permissions:

• USER node
• COPY --chown=node:node . /usr/src/app

5. Properly handle events to safely
terminate a Node.js application
Docker creates processes as PID 1, and they must
inherently handle process signals to function properly.
This is why you should avoid any of these variations:

• CMD “npm” “start”
• CMD [“yarn”, “start”]
• CMD “node” “server.js”
• CMD “start-app.sh”

Instead, use a lightweight init system, such as dumb-init,
to properly spawn the Node.js runtime process with
signals support:

• CMD [“dumb-init”, “node”, “server.js”]

6. Gracefully tear down Node.js apps
Avoid an abrupt termination of a running Node.js
application that halts live connections. Instead, use a
process signal event handler:

async function closeGracefully(signal) {
 await fastify.close()
 process.exit()
}
process.on('SIGINT', closeGracefully)

7. Find and fix security vulnerabilities in
your Node.js Docker image
Docker base images may include security vulnerabilities
in the software toolchain they bundle, including the
Node.js runtime itself. Scan and fix security vulnerabilities
with the free Snyk Container tool which also provides
base image recommendations:

• npm install -g snyk
• snyk auth
• snyk container test node14.2.0-alpine
 --file=Dockerfile

8. Use multi-stage builds
Avoid having one big build stage when attempting to
clean up sensitive data from it or dangling dependencies.
Instead, use multi-stage Docker image builds and separate
concerns between the build flow and the creation of a
production base image.

9. Use .dockerignore
Use .dockerignore to ensure:

• Iocal artifacts of node_modules/ aren’t copied into
 the container image.
• sensitive files, such as .npmrc, .env or others,
 aren’t leaked into the container image.
• a small Docker base image without redundant and
 unnecessary files.

10. Mount secrets into the Docker image
Secrets are a tricky thing to manage. Avoid the following
security pitfalls:

• passing secrets via build arguments in non
 multi-stage builds
• putting secrets inside the Dockerfile

Instead, use the built-in secrets mounting. To mount a
.npmrc file for package install:

• In the Dockerfile: RUN
 --mount=type=secret,id=npmrc,
 target=/usr/src/app/.npmrc npm ci
 --only=production

• Then build the image with: docker build .
 --build-arg NPM_TOKEN=1234 --secret
 id=npmrc,src=.npmrc

Authors @liran_tal @goldbergyoni

https://twitter.com/goldbergyoni
https://twitter.com/liran_tal

