youtube-bpm-playlist@0.1.6
Vulnerabilities |
4 via 6 paths |
---|---|
Dependencies |
139 |
Source |
npm |
Find, fix and prevent vulnerabilities in your code.
high severity
- Vulnerable module: json-bigint
- Introduced through: googleapis@42.0.0
Detailed paths
-
Introduced through: youtube-bpm-playlist@0.1.6 › googleapis@42.0.0 › google-auth-library@5.10.1 › gcp-metadata@3.5.0 › json-bigint@0.3.1Remediation: Upgrade to googleapis@49.0.0.
-
Introduced through: youtube-bpm-playlist@0.1.6 › googleapis@42.0.0 › googleapis-common@3.2.2 › google-auth-library@5.10.1 › gcp-metadata@3.5.0 › json-bigint@0.3.1Remediation: Upgrade to googleapis@49.0.0.
Overview
json-bigint is a JSON.parse with bigints support
Affected versions of this package are vulnerable to Prototype Pollution via the parse
function.
POC
const JSONbig = require('json-bigint')
const json = '{"__proto__":1000000000000000,"c":{"__proto__":[],"length":1e200}}'
const r = JSONbig.parse(json)
console.log(r.toString())
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named _proto_
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to _proto_.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade json-bigint
to version 1.0.0 or higher.
References
high severity
- Vulnerable module: node-forge
- Introduced through: googleapis@42.0.0
Detailed paths
-
Introduced through: youtube-bpm-playlist@0.1.6 › googleapis@42.0.0 › google-auth-library@5.10.1 › gtoken@4.1.4 › google-p12-pem@2.0.4 › node-forge@0.9.2Remediation: Upgrade to googleapis@49.0.0.
-
Introduced through: youtube-bpm-playlist@0.1.6 › googleapis@42.0.0 › googleapis-common@3.2.2 › google-auth-library@5.10.1 › gtoken@4.1.4 › google-p12-pem@2.0.4 › node-forge@0.9.2Remediation: Upgrade to googleapis@49.0.0.
Overview
node-forge is a JavaScript implementations of network transports, cryptography, ciphers, PKI, message digests, and various utilities.
Affected versions of this package are vulnerable to Prototype Pollution via the util.setPath
function.
Note: version 0.10.0 is a breaking change removing the vulnerable functions.
POC:
const nodeforge = require('node-forge');
var obj = {};
nodeforge.util.setPath(obj, ['__proto__', 'polluted'], true);
console.log(polluted);
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named _proto_
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to _proto_.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade node-forge
to version 0.10.0 or higher.
References
medium severity
- Vulnerable module: axios
- Introduced through: youtube-v3-api@1.1.1
Detailed paths
-
Introduced through: youtube-bpm-playlist@0.1.6 › youtube-v3-api@1.1.1 › axios@0.18.1
Overview
axios is a promise based HTTP client for the browser and node.js.
Affected versions of this package are vulnerable to Server-Side Request Forgery (SSRF). An attacker is able to bypass a proxy by providing a URL that responds with a redirect to a restricted host or IP address.
Remediation
Upgrade axios
to version 0.21.1 or higher.
References
low severity
- Vulnerable module: utile
- Introduced through: youtube-node@1.3.3
Detailed paths
-
Introduced through: youtube-bpm-playlist@0.1.6 › youtube-node@1.3.3 › prompt@1.1.0 › utile@0.3.0
Overview
utile is a drop-in replacement for util with some additional advantageous functions.
Affected versions of this package are vulnerable to Uninitialized Memory Exposure. A malicious user could extract sensitive data from uninitialized memory or to cause a DoS by passing in a large number, in setups where typed user input can be passed.
Note Uninitialized Memory Exposure impacts only Node.js 6.x or lower, Denial of Service impacts any Node.js version.
Details
The Buffer class on Node.js is a mutable array of binary data, and can be initialized with a string, array or number.
const buf1 = new Buffer([1,2,3]);
// creates a buffer containing [01, 02, 03]
const buf2 = new Buffer('test');
// creates a buffer containing ASCII bytes [74, 65, 73, 74]
const buf3 = new Buffer(10);
// creates a buffer of length 10
The first two variants simply create a binary representation of the value it received. The last one, however, pre-allocates a buffer of the specified size, making it a useful buffer, especially when reading data from a stream.
When using the number constructor of Buffer, it will allocate the memory, but will not fill it with zeros. Instead, the allocated buffer will hold whatever was in memory at the time. If the buffer is not zeroed
by using buf.fill(0)
, it may leak sensitive information like keys, source code, and system info.
Remediation
There is no fix version for utile
.