simple-cms@0.0.8

Vulnerabilities

9 via 9 paths

Dependencies

181

Source

npm

Find, fix and prevent vulnerabilities in your code.

Severity
  • 7
  • 2
Status
  • 9
  • 0
  • 0

high severity

Insecure Encryption

  • Vulnerable module: bcrypt
  • Introduced through: co-bcrypt@1.0.0

Detailed paths

  • Introduced through: simple-cms@0.0.8 co-bcrypt@1.0.0 bcrypt@0.8.7

Overview

bcrypt is an A library to help you hash passwords.

Affected versions of this package are vulnerable to Insecure Encryption. Data is truncated wrong when its length is greater than 255 bytes.

Remediation

Upgrade bcrypt to version 5.0.0 or higher.

References

high severity

Internal Property Tampering

  • Vulnerable module: bson
  • Introduced through: monk@3.1.4

Detailed paths

  • Introduced through: simple-cms@0.0.8 monk@3.1.4 mongodb@2.2.36 mongodb-core@2.1.20 bson@1.0.9
    Remediation: Upgrade to monk@7.0.0.

Overview

bson is a BSON Parser for node and browser.

Affected versions of this package are vulnerable to Internal Property Tampering. The package will ignore an unknown value for an object's _bsotype, leading to cases where an object is serialized as a document rather than the intended BSON type.

Remediation

Upgrade bson to version 1.1.4 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: extend
  • Introduced through: koa-body@1.7.0

Detailed paths

  • Introduced through: simple-cms@0.0.8 koa-body@1.7.0 extend@1.3.0
    Remediation: Upgrade to koa-body@2.0.0.

Overview

extend is a port of the classic extend() method from jQuery.

Affected versions of this package are vulnerable to Prototype Pollution. Utilities function can be tricked into modifying the prototype of "Object" when the attacker control part of the structure passed to these function. This can let an attacker add or modify existing property that will exist on all object.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade extend to version 2.0.2, 3.0.2 or higher.

References

high severity

Directory Traversal

  • Vulnerable module: koa-body
  • Introduced through: koa-body@1.7.0

Detailed paths

  • Introduced through: simple-cms@0.0.8 koa-body@1.7.0
    Remediation: Upgrade to koa-body@3.0.0.

Overview

koa-body is A koa body parser middleware. Support multipart, urlencoded and json request bodies.

Affected versions of the package are vulnerable to Directory Traversal. An attacker may POST or PUT a request to the /upload-files endpoint and make the request handler think a file has been uploaded to /any/file/path. By using paths of sensitive files an attacker would be able to read private keys, configuration files and passwords.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

There is no fix version for koa-body.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: mongodb
  • Introduced through: monk@3.1.4

Detailed paths

  • Introduced through: simple-cms@0.0.8 monk@3.1.4 mongodb@2.2.36
    Remediation: Upgrade to monk@7.0.0.

Overview

mongodb is an official MongoDB driver for Node.js.

Affected versions of this package are vulnerable to Denial of Service (DoS). The package fails to properly catch an exception when a collection name is invalid and the DB does not exist, crashing the application.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade mongodb to version 3.1.13 or higher.

References

high severity

Command Injection

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@3.1.8

Detailed paths

  • Introduced through: simple-cms@0.0.8 nodemailer@3.1.8
    Remediation: Upgrade to nodemailer@6.4.16.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Command Injection. Use of crafted recipient email addresses may result in arbitrary command flag injection in sendmail transport for sending mails.

PoC

-bi@example.com (-bi Initialize the alias database.)
-d0.1a@example.com (The option -d0.1 prints the version of sendmail and the options it was compiled with.)
-Dfilename@example.com (Debug output ffile)

Remediation

Upgrade nodemailer to version 6.4.16 or higher.

References

high severity

Remote Code Execution (RCE)

  • Vulnerable module: pug
  • Introduced through: pug@2.0.4

Detailed paths

  • Introduced through: simple-cms@0.0.8 pug@2.0.4
    Remediation: Upgrade to pug@3.0.1.

Overview

pug is an A clean, whitespace-sensitive template language for writing HTML

Affected versions of this package are vulnerable to Remote Code Execution (RCE). If a remote attacker was able to control the pretty option of the pug compiler, e.g. if you spread a user provided object such as the query parameters of a request into the pug template inputs, it was possible for them to achieve remote code execution on the node.js backend.

Remediation

Upgrade pug to version 3.0.1 or higher.

References

medium severity

Cryptographic Issues

  • Vulnerable module: bcrypt
  • Introduced through: co-bcrypt@1.0.0

Detailed paths

  • Introduced through: simple-cms@0.0.8 co-bcrypt@1.0.0 bcrypt@0.8.7

Overview

bcrypt is an A library to help you hash passwords.

Affected versions of this package are vulnerable to Cryptographic Issues. When hashing a password containing an ASCII NUL character, that character acts as the string terminator. Any following characters are ignored.

Remediation

Upgrade bcrypt to version 5.0.0 or higher.

References

medium severity

Buffer Overflow

  • Vulnerable module: validator
  • Introduced through: koa-validation@0.1.9

Detailed paths

  • Introduced through: simple-cms@0.0.8 koa-validation@0.1.9 validator@4.9.0

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Buffer Overflow. It used a regular expression (/^(?:[A-Z0-9+\/]{4})*(?:[A-Z0-9+\/]{2}==|[A-Z0-9+\/]{3}=|[A-Z0-9+\/]{4})$/i) in order to validate Base64 strings.

Remediation

Upgrade validator to version 5.0.0 or higher.

References