ngx-openlayers@0.6.10

Vulnerabilities

51 via 92 paths

Dependencies

468

Source

npm

Find, fix and prevent vulnerabilities in your code.

Severity
  • 29
  • 18
  • 4
Status
  • 51
  • 0
  • 0

high severity

Remote Memory Exposure

  • Vulnerable module: bl
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 request@2.61.0 bl@1.0.3

Overview

bl is a library that allows you to collect buffers and access with a standard readable buffer interface.

Affected versions of this package are vulnerable to Remote Memory Exposure. If user input ends up in consume() argument and can become negative, BufferList state can be corrupted, tricking it into exposing uninitialized memory via regular .slice() calls.

PoC by chalker

const { BufferList } = require('bl')
const secret = require('crypto').randomBytes(256)
for (let i = 0; i < 1e6; i++) {
  const clone = Buffer.from(secret)
  const bl = new BufferList()
  bl.append(Buffer.from('a'))
  bl.consume(-1024)
  const buf = bl.slice(1)
  if (buf.indexOf(clone) !== -1) {
    console.error(`Match (at ${i})`, buf)
  }
}

Remediation

Upgrade bl to version 2.2.1, 3.0.1, 4.0.3, 1.2.3 or higher.

References

high severity

Resources Downloaded over Insecure Protocol

  • Vulnerable module: closure-util
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

closure-util contains Utilities for Closure Library based projects. Affected versions of the package are vulnerable to Man in the Middle (MitM) attacks due to downloading resources over an insecure protocol.

Remediation

Upgrade closure-util to version 1.19.0 or higher.

References

high severity

Arbitrary File Write via Archive Extraction (Zip Slip)

  • Vulnerable module: decompress-zip
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 decompress-zip@0.3.0

Overview

decompress-zip extracts the contents of the ZIP archive file.

Affected versions of this package are vulnerable to Arbitrary File Write via Archive Extraction (Zip Slip). The package will extract files outside of the scope of the specified target directory because there is no validation that file extraction stays within the defined target path.

Details

It is exploited using a specially crafted zip archive, that holds path traversal filenames. When exploited, a filename in a malicious archive is concatenated to the target extraction directory, which results in the final path ending up outside of the target folder. For instance, a zip may hold a file with a "../../file.exe" location and thus break out of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicous file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:


+2018-04-15 22:04:29 ..... 19 19 good.txt

+2018-04-15 22:04:42 ..... 20 20 ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade decompress-zip to version 0.2.2, 0.3.2 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: engine.io
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 engine.io@1.8.3

Overview

engine.io is a realtime engine behind Socket.IO. It provides the foundation of a bidirectional connection between client and server

Affected versions of this package are vulnerable to Denial of Service (DoS) via a POST request to the long polling transport.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade engine.io to version 4.0.0 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: fresh
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 send@0.14.2 fresh@0.3.0
    Remediation: Upgrade to openlayers@4.5.0.

Overview

fresh is HTTP response freshness testing.

Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks. A Regular Expression (/ *, */) was used for parsing HTTP headers and take about 2 seconds matching time for 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade fresh to version 0.5.2 or higher.

References

high severity

Arbitrary Code Execution

  • Vulnerable module: handlebars
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 handlebars@4.0.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 handlebars@4.0.6

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Arbitrary Code Execution. The package's lookup helper doesn't validate templates correctly, allowing attackers to submit templates that execute arbitrary JavaScript in the system.

Remediation

Upgrade handlebars to version 4.5.3, 3.0.8 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: handlebars
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 handlebars@4.0.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 handlebars@4.0.6

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Denial of Service (DoS). The package's parser may be forced into an endless loop while processing specially-crafted templates, which may allow attackers to exhaust system resources leading to Denial of Service.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade handlebars to version 4.4.5 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: handlebars
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 handlebars@4.0.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 handlebars@4.0.6

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Prototype Pollution. Templates may alter an Objects' prototype, thus allowing an attacker to execute arbitrary code on the server.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade handlebars to version 4.0.14, 4.1.2 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: handlebars
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 handlebars@4.0.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 handlebars@4.0.6

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Prototype Pollution. A Prototype Pollution allowing Remote Code Execution can be exploited using the constructor, via the 'lookup' helper. This vulnerability is due to an incomplete fix for: SNYK-JS-HANDLEBARS-173692

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade handlebars to version 3.0.7, 4.1.2, 4.0.14 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: handlebars
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 handlebars@4.0.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 handlebars@4.0.6

Overview

handlebars is a extension to the Mustache templating language.

Affected versions of this package are vulnerable to Prototype Pollution. Templates may alter an Object's __proto__ and __defineGetter__ properties, which may allow an attacker to execute arbitrary code on the server through crafted payloads.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade handlebars to version 4.3.0, 3.8.0 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: handlebars
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 handlebars@4.0.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 handlebars@4.0.6

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Prototype Pollution. It is possible to add or modify properties to the Object prototype through a malicious template. This may allow attackers to crash the application or execute Arbitrary Code in specific conditions.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade handlebars to version 4.5.3, 3.0.8 or higher.

References

high severity

Command Injection

  • Vulnerable module: lodash
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 lodash@4.17.4

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Command Injection via template.

PoC

var _ = require('lodash');

_.template('', { variable: '){console.log(process.env)}; with(obj' })()

Remediation

Upgrade lodash to version 4.17.21 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 lodash@4.17.4

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The function defaultsDeep could be tricked into adding or modifying properties of Object.prototype using a constructor payload.

PoC by Snyk

const mergeFn = require('lodash').defaultsDeep;
const payload = '{"constructor": {"prototype": {"a0": true}}}'

function check() {
    mergeFn({}, JSON.parse(payload));
    if (({})[`a0`] === true) {
        console.log(`Vulnerable to Prototype Pollution via ${payload}`);
    }
  }

check();

For more information, check out our blog post

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.12 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 lodash@4.17.4

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution in zipObjectDeep due to an incomplete fix for CVE-2020-8203.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.20 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 lodash@4.17.4

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution via the setWith and set functions.

PoC by awarau

  • Create a JS file with this contents:
    lod = require('lodash')
    lod.setWith({}, "__proto__[test]", "123")
    lod.set({}, "__proto__[test2]", "456")
    console.log(Object.prototype)
    
  • Execute it with node
  • Observe that test and test2 is now in the Object.prototype.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.17 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 lodash@4.17.4

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The functions merge, mergeWith, and defaultsDeep could be tricked into adding or modifying properties of Object.prototype. This is due to an incomplete fix to CVE-2018-3721.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.11 or higher.

References

high severity

Cross-site Scripting (XSS)

  • Vulnerable module: marked
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 marked@0.3.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS). Data URIs enable embedding small files in line in HTML documents, provided in the URL itself. Attackers can craft malicious web pages containing either HTML or script code that utilizes the data URI scheme, allowing them to bypass access controls or steal sensitive information.

An example of data URI used to deliver javascript code. The data holds <script>alert('XSS')</script> tag in base64 encoded format.

[xss link](data:text/html;base64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K)

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade marked to version 0.3.7 or higher.

References

high severity

Cross-site Scripting (XSS)

  • Vulnerable module: marked
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 marked@0.3.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS). Browsers support both lowercase and uppercase x in hexadecimal form of HTML character entity, but marked unescaped only lowercase.

This may allow an attacker to create a link with javascript code.

For example:

var marked = require('marked');
marked.setOptions({
  renderer: new marked.Renderer(),
  sanitize: true
});

text = `
lower[click me](javascript&#x3a;...)lower
upper[click me](javascript&#X3a;...)upper
`;

console.log(marked(text));

will render the following:

<p>lowerlower
upper<a href="javascript&#X3a;...">click me</a>upper</p>

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade marked to version 0.3.9 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 marked@0.3.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when parsing the input markdown content (1,000 characters costs around 6 seconds matching time).

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 0.3.9 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 marked@0.3.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). This can cause an impact of about 10 seconds matching time for data 150 characters long.

Disclosure Timeline

  • Feb 21th, 2018 - Initial Disclosure to package owner
  • Feb 21th, 2018 - Initial Response from package owner
  • Feb 26th, 2018 - Fix issued
  • Feb 27th, 2018 - Vulnerability published

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 0.3.18 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mout
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 mout@0.10.0

Overview

mout is a Modular Utilities

Affected versions of this package are vulnerable to Prototype Pollution. The deepFillIn function can be used to 'fill missing properties recursively', while the deepMixIn 'mixes objects into the target object, recursively mixing existing child objects as well'. In both cases, the key used to access the target object recursively is not checked, leading to a Prototype Pollution.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

There is no fixed version for mout.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: parsejson
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-client@1.7.3 engine.io-client@1.8.3 parsejson@0.0.3

Overview

parsejson is a method that parses a JSON string and returns a JSON object.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks. An attacker may pass a specially crafted JSON data, causing the server to hang.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

There is no fixed version for parsejson.

References

high severity

Prototype Override Protection Bypass

  • Vulnerable module: qs
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 request@2.61.0 qs@4.0.0
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Prototype Override Protection Bypass. By default qs protects against attacks that attempt to overwrite an object's existing prototype properties, such as toString(), hasOwnProperty(),etc.

From qs documentation:

By default parameters that would overwrite properties on the object prototype are ignored, if you wish to keep the data from those fields either use plainObjects as mentioned above, or set allowPrototypes to true which will allow user input to overwrite those properties. WARNING It is generally a bad idea to enable this option as it can cause problems when attempting to use the properties that have been overwritten. Always be careful with this option.

Overwriting these properties can impact application logic, potentially allowing attackers to work around security controls, modify data, make the application unstable and more.

In versions of the package affected by this vulnerability, it is possible to circumvent this protection and overwrite prototype properties and functions by prefixing the name of the parameter with [ or ]. e.g. qs.parse("]=toString") will return {toString = true}, as a result, calling toString() on the object will throw an exception.

Example:

qs.parse('toString=foo', { allowPrototypes: false })
// {}

qs.parse("]=toString", { allowPrototypes: false })
// {toString = true} <== prototype overwritten

For more information, you can check out our blog.

Disclosure Timeline

  • February 13th, 2017 - Reported the issue to package owner.
  • February 13th, 2017 - Issue acknowledged by package owner.
  • February 16th, 2017 - Partial fix released in versions 6.0.3, 6.1.1, 6.2.2, 6.3.1.
  • March 6th, 2017 - Final fix released in versions 6.4.0,6.3.2, 6.2.3, 6.1.2 and 6.0.4

    Remediation

    Upgrade qs to version 6.0.4, 6.1.2, 6.2.3, 6.3.2 or higher.

    References

  • GitHub Commit
  • GitHub Issue

high severity

Denial of Service (DoS)

  • Vulnerable module: socket.io-parser
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-parser@2.3.1
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-adapter@0.5.0 socket.io-parser@2.3.1
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-client@1.7.3 socket.io-parser@2.3.1

Overview

socket.io-parser is a socket.io protocol parser

Affected versions of this package are vulnerable to Denial of Service (DoS) via a large packet because a concatenation approach is used.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade socket.io-parser to version 3.3.2, 3.4.1 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 tar@1.0.1

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. Extracting tarballs containing a hard-link to a file that already exists in the system, and a file that matches the hard-link may overwrite system's files with the contents of the extracted file.

Remediation

Upgrade tar to version 2.2.2, 4.4.2 or higher.

References

high severity

Symlink File Overwrite

  • Vulnerable module: tar
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 tar@1.0.1
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Symlink File Overwrite. It does not properly normalize symbolic links pointing to targets outside the extraction root. As a result, packages may hold symbolic links to parent and sibling directories and overwrite those files when the package is extracted.

Remediation

Upgrade tar to version 2.0.0 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: ws
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 engine.io@1.8.3 ws@1.1.2
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-client@1.7.3 engine.io-client@1.8.3 ws@1.1.2
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

ws is a simple to use websocket client, server and console for node.js.

Affected versions of this package are vulnerable to Denial of Service (DoS) attacks. A specially crafted value of the Sec-WebSocket-Extensions header that used Object.prototype property names as extension or parameter names could be used to make a ws server crash.

PoC:

const WebSocket = require('ws');
const net = require('net');

const wss = new WebSocket.Server({ port: 3000 }, function () {
  const payload = 'constructor';  // or ',;constructor'

  const request = [
    'GET / HTTP/1.1',
    'Connection: Upgrade',
    'Sec-WebSocket-Key: test',
    'Sec-WebSocket-Version: 8',
    `Sec-WebSocket-Extensions: ${payload}`,
    'Upgrade: websocket',
    '\r\n'
  ].join('\r\n');

  const socket = net.connect(3000, function () {
    socket.resume();
    socket.write(request);
  });
});

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade ws to version 1.1.5, 3.3.1 or higher.

References

high severity
new

Access Restriction Bypass

  • Vulnerable module: xmlhttprequest-ssl
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-client@1.7.3 engine.io-client@1.8.3 xmlhttprequest-ssl@1.5.3

Overview

xmlhttprequest-ssl is a fork of xmlhttprequest.

Affected versions of this package are vulnerable to Access Restriction Bypass. The package disables SSL certificate validation by default, because rejectUnauthorized (when the property exists but is undefined) is considered to be false within the https.request function of Node.js. In other words, no certificate is ever rejected.

PoC

const XMLHttpRequest = require('xmlhttprequest-ssl');

var xhr = new XMLHttpRequest();        /* pass empty object in version 1.5.4 to work around bug */

xhr.open("GET", "https://self-signed.badssl.com/");
xhr.addEventListener('readystatechange', () => console.log('ready state:', xhr.status));
xhr.addEventListener('loadend', loadend);

function loadend()
{
  console.log('loadend:', xhr);
  if (xhr.status === 0 && xhr.statusText.code === 'DEPTH_ZERO_SELF_SIGNED_CERT')
    console.log('test passed: self-signed cert rejected');
  else
    console.log('*** test failed: self-signed cert used to retrieve content');
}

xhr.send();

Remediation

Upgrade xmlhttprequest-ssl to version 1.6.1 or higher.

References

high severity

Arbitrary Code Injection

  • Vulnerable module: xmlhttprequest-ssl
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-client@1.7.3 engine.io-client@1.8.3 xmlhttprequest-ssl@1.5.3

Overview

xmlhttprequest-ssl is a fork of xmlhttprequest.

Affected versions of this package are vulnerable to Arbitrary Code Injection. Provided requests are sent synchronously (async=False on xhr.open), malicious user input flowing into xhr.send could result in arbitrary code being injected and run.

POC

const { XMLHttpRequest } = require("xmlhttprequest")

const xhr = new XMLHttpRequest()
xhr.open("POST", "http://localhost.invalid/", false /* use synchronize request */)
xhr.send("\\');require(\"fs\").writeFileSync(\"/tmp/aaaaa.txt\", \"poc-20210306\");req.end();//")

Remediation

Upgrade xmlhttprequest-ssl to version 1.6.2 or higher.

References

medium severity
new

Prototype Pollution

  • Vulnerable module: handlebars
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 handlebars@4.0.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 handlebars@4.0.6

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Prototype Pollution when selecting certain compiling options to compile templates coming from an untrusted source.

POC

<script src="https://cdn.jsdelivr.net/npm/handlebars@latest/dist/handlebars.js"></script> 
<script> 
// compile the template 

var s2 = `{{'a/.") || alert("Vulnerable Handlebars JS when compiling in compat mode'}}`; 
var template = Handlebars.compile(s2, { 
compat: true 
}); 
// execute the compiled template and print the output to the console console.log(template({})); 
</script>

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade handlebars to version 4.7.7 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: handlebars
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 handlebars@4.0.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 handlebars@4.0.6

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Prototype Pollution. Prototype access to the template engine allows for potential code execution.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade handlebars to version 4.6.0 or higher.

References

medium severity

Remote Code Execution (RCE)

  • Vulnerable module: handlebars
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 handlebars@4.0.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 handlebars@4.0.6

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Remote Code Execution (RCE) when selecting certain compiling options to compile templates coming from an untrusted source.

POC

<script src="https://cdn.jsdelivr.net/npm/handlebars@latest/dist/handlebars.js"></script> 
<script> 
// compile the template 
var s = ` 
{{#with (__lookupGetter__ "__proto__")}} 
{{#with (./constructor.getOwnPropertyDescriptor . "valueOf")}} 
{{#with ../constructor.prototype}} 
{{../../constructor.defineProperty . "hasOwnProperty" ..}} 
{{/with}} 
{{/with}} 
{{/with}} 
{{#with "constructor"}} 
{{#with split}} 
{{pop (push "alert('Vulnerable Handlebars JS when compiling in strict mode');")}} 
{{#with .}} 
{{#with (concat (lookup join (slice 0 1)))}} 
{{#each (slice 2 3)}} 
{{#with (apply 0 ../..)}} 
{{.}} 
{{/with}} 
{{/each}} 
{{/with}} 
{{/with}} 
{{/with}} 
{{/with}} 
`;
var template = Handlebars.compile(s, { 
strict: true 
}); 
// execute the compiled template and print the output to the console console.log(template({})); 
</script>

Remediation

Upgrade handlebars to version 4.7.7 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: hoek
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 request@2.61.0 hawk@3.1.3 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 request@2.61.0 hawk@3.1.3 boom@2.10.1 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 request@2.61.0 hawk@3.1.3 sntp@1.0.9 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 request@2.61.0 hawk@3.1.3 cryptiles@2.0.5 boom@2.10.1 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.

Overview

hoek is an Utility methods for the hapi ecosystem.

Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.

PoC by Olivier Arteau (HoLyVieR)

var Hoek = require('hoek');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';

var a = {};
console.log("Before : " + a.oops);
Hoek.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade hoek to version 4.2.1, 5.0.3 or higher.

References

medium severity

Timing Attack

  • Vulnerable module: http-signature
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 request@2.61.0 http-signature@0.11.0
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

http-signature is a reference implementation of Joyent's HTTP Signature scheme.

Affected versions of the package are vulnerable to Timing Attacks due to time-variable comparison of signatures.

The library implemented a character to character comparison, similar to the built-in string comparison mechanism, ===, and not a time constant string comparison. As a result, the comparison will fail faster when the first characters in the signature are incorrect. An attacker can use this difference to perform a timing attack, essentially allowing them to guess the signature one character at a time.

You can read more about timing attacks in Node.js on the Snyk blog.

Remediation

Upgrade http-signature to version 1.0.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 lodash@4.17.4
    Remediation: Open PR to patch lodash@4.17.4.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The function zipObjectDeep can be tricked into adding or modifying properties of the Object prototype. These properties will be present on all objects.

PoC

const _ = require('lodash');
_.zipObjectDeep(['__proto__.z'],[123])
console.log(z) // 123

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.16 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 lodash@4.17.4

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.

PoC by Olivier Arteau (HoLyVieR)

var _= require('lodash');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';

var a = {};
console.log("Before : " + a.oops);
_.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.5 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: lodash
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 lodash@4.17.4

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber, trim and trimEnd functions.

POC

var lo = require('lodash');

function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}

return ret + "1";
}

var s = build_blank(50000)
var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0)

var time1 = Date.now();
lo.toNumber(s)
var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1)

var time2 = Date.now();
lo.trimEnd(s)
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2)

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade lodash to version 4.17.21 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: lodash
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 lodash@4.17.4

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It parses dates using regex strings, which may cause a slowdown of 2 seconds per 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade lodash to version 4.17.11 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: marked
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 marked@0.3.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS). When mangling is disabled via option mangle, marked doesn't escape target href. This may allow an attacker to inject arbitrary html-event into resulting a tag.

For example:

var marked = require('marked');
marked.setOptions({
  renderer: new marked.Renderer(),
  sanitize: true,
  mangle: false
});

text = `
<bar"onclick="alert('XSS')"@foo>
`;

console.log(marked(text));

will render:

<p><a href="mailto:bar"onclick="alert('XSS')"@foo">bar"onclick="alert('XSS')"@foo</a></p>

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade marked to version 0.3.9 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS )

  • Vulnerable module: marked
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 jsdoc@3.4.3 marked@0.3.19
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 marked@0.3.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS ). The em regex within src/rules.js file have multiple unused capture groups which could lead to a denial of service attack if user input is reachable.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 1.1.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 jsdoc@3.4.3 marked@0.3.19
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 marked@0.3.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The inline.text regex may take quadratic time to scan for potential email addresses starting at every point.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 0.6.2 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 jsdoc@3.4.3 marked@0.3.19
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 marked@0.3.6
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). A Denial of Service condition could be triggered through exploitation of the heading regex.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 0.4.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: minimist
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 handlebars@4.0.6 optimist@0.6.1 minimist@0.0.10
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 handlebars@4.0.6 optimist@0.6.1 minimist@0.0.10
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 mkdirp@0.5.1 minimist@0.0.8

Overview

minimist is a parse argument options module.

Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a constructor or __proto__ payload.

PoC by Snyk

require('minimist')('--__proto__.injected0 value0'.split(' '));
console.log(({}).injected0 === 'value0'); // true

require('minimist')('--constructor.prototype.injected1 value1'.split(' '));
console.log(({}).injected1 === 'value1'); // true

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade minimist to version 0.2.1, 1.2.3 or higher.

References

medium severity
new

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: path-parse
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 browserify@14.3.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 browserify@14.3.0 module-deps@4.1.1 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 derequire@2.0.6 yargs@6.6.0 read-pkg-up@1.0.1 read-pkg@1.1.0 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6

Overview

path-parse is a Node.js path.parse() ponyfill

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via splitDeviceRe, splitTailRe, and splitPathRe regular expressions. ReDoS exhibits polynomial worst-case time complexity.

PoC

var pathParse = require('path-parse');
function build_attack(n) {
    var ret = ""
    for (var i = 0; i < n; i++) {
        ret += "/"
    }
    return ret + "◎";
}

for(var i = 1; i <= 5000000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        pathParse(attack_str);
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
 }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

There is no fixed version for path-parse.

References

medium severity

Remote Memory Exposure

  • Vulnerable module: request
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 request@2.61.0
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Remote Memory Exposure. A potential remote memory exposure vulnerability exists in request. If a request uses a multipart attachment and the body type option is number with value X, then X bytes of uninitialized memory will be sent in the body of the request.

Note that while the impact of this vulnerability is high (memory exposure), exploiting it is likely difficult, as the attacker needs to somehow control the body type of the request. One potential exploit scenario is when a request is composed based on JSON input, including the body type, allowing a malicious JSON to trigger the memory leak.

Details

Constructing a Buffer class with integer N creates a Buffer of length N with non zero-ed out memory. Example:

var x = new Buffer(100); // uninitialized Buffer of length 100
// vs
var x = new Buffer('100'); // initialized Buffer with value of '100'

Initializing a multipart body in such manner will cause uninitialized memory to be sent in the body of the request.

Proof of concept

var http = require('http')
var request = require('request')

http.createServer(function (req, res) {
  var data = ''
  req.setEncoding('utf8')
  req.on('data', function (chunk) {
    console.log('data')
    data += chunk
  })
  req.on('end', function () {
    // this will print uninitialized memory from the client
    console.log('Client sent:\n', data)
  })
  res.end()
}).listen(8000)

request({
  method: 'POST',
  uri: 'http://localhost:8000',
  multipart: [{ body: 1000 }]
},
function (err, res, body) {
  if (err) return console.error('upload failed:', err)
  console.log('sent')
})

Remediation

Upgrade request to version 2.68.0 or higher.

References

medium severity

Insecure Defaults

  • Vulnerable module: socket.io
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3

Overview

socket.io is a node.js realtime framework server.

Affected versions of this package are vulnerable to Insecure Defaults due to CORS Misconfiguration. All domains are whitelisted by default.

Remediation

Upgrade socket.io to version 2.4.0 or higher.

References

medium severity

Uninitialized Memory Exposure

  • Vulnerable module: tunnel-agent
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 get-down@1.1.0 request@2.61.0 tunnel-agent@0.4.3
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

tunnel-agent is HTTP proxy tunneling agent. Affected versions of the package are vulnerable to Uninitialized Memory Exposure.

A possible memory disclosure vulnerability exists when a value of type number is used to set the proxy.auth option of a request request and results in a possible uninitialized memory exposures in the request body.

This is a result of unobstructed use of the Buffer constructor, whose insecure default constructor increases the odds of memory leakage.

Details

Constructing a Buffer class with integer N creates a Buffer of length N with raw (not "zero-ed") memory.

In the following example, the first call would allocate 100 bytes of memory, while the second example will allocate the memory needed for the string "100":

// uninitialized Buffer of length 100
x = new Buffer(100);
// initialized Buffer with value of '100'
x = new Buffer('100');

tunnel-agent's request construction uses the default Buffer constructor as-is, making it easy to append uninitialized memory to an existing list. If the value of the buffer list is exposed to users, it may expose raw server side memory, potentially holding secrets, private data and code. This is a similar vulnerability to the infamous Heartbleed flaw in OpenSSL.

Proof of concept by ChALkeR

require('request')({
  method: 'GET',
  uri: 'http://www.example.com',
  tunnel: true,
  proxy:{
      protocol: 'http:',
      host:"127.0.0.1",
      port:8080,
      auth:80
  }
});

You can read more about the insecure Buffer behavior on our blog.

Similar vulnerabilities were discovered in request, mongoose, ws and sequelize.

Remediation

Upgrade tunnel-agent to version 0.6.0 or higher. Note This is vulnerable only for Node <=4

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: debug
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 send@0.14.2 debug@2.2.0
    Remediation: Upgrade to openlayers@4.5.0.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-parser@2.3.1 debug@2.2.0
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-adapter@0.5.0 socket.io-parser@2.3.1 debug@2.2.0
    Remediation: Open PR to patch debug@2.2.0.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-client@1.7.3 socket.io-parser@2.3.1 debug@2.2.0
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 debug@2.3.3
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 engine.io@1.8.3 debug@2.3.3
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-adapter@0.5.0 debug@2.3.3
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-client@1.7.3 debug@2.3.3
    Remediation: Upgrade to openlayers@4.5.0.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-client@1.7.3 engine.io-client@1.8.3 debug@2.3.3
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

debug is a JavaScript debugging utility modelled after Node.js core's debugging technique..

debug uses printf-style formatting. Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks via the the %o formatter (Pretty-print an Object all on a single line). It used a regular expression (/\s*\n\s*/g) in order to strip whitespaces and replace newlines with spaces, in order to join the data into a single line. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade debug to version 2.6.9, 3.1.0 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: mime
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 send@0.14.2 mime@1.3.4
    Remediation: Upgrade to openlayers@4.5.0.

Overview

mime is a comprehensive, compact MIME type module.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It uses regex the following regex /.*[\.\/\\]/ in its lookup, which can cause a slowdown of 2 seconds for 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade mime to version 1.4.1, 2.0.3 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ms
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 send@0.14.2 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-parser@2.3.1 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-adapter@0.5.0 socket.io-parser@2.3.1 debug@2.2.0 ms@0.7.1
    Remediation: Open PR to patch ms@0.7.1.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-client@1.7.3 socket.io-parser@2.3.1 debug@2.2.0 ms@0.7.1
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 send@0.14.2 ms@0.7.2
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 debug@2.3.3 ms@0.7.2
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 engine.io@1.8.3 debug@2.3.3 ms@0.7.2
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-adapter@0.5.0 debug@2.3.3 ms@0.7.2
    Remediation: Upgrade to ngx-openlayers@0.7.11.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-client@1.7.3 debug@2.3.3 ms@0.7.2
    Remediation: Upgrade to openlayers@4.5.0.
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 socket.io@1.7.3 socket.io-client@1.7.3 engine.io-client@1.8.3 debug@2.3.3 ms@0.7.2
    Remediation: Upgrade to ngx-openlayers@0.7.11.

Overview

ms is a tiny millisecond conversion utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms() function.

Proof of concept

ms = require('ms');
ms('1'.repeat(9998) + 'Q') // Takes about ~0.3s

Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author. Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.

For more information on Regular Expression Denial of Service (ReDoS) attacks, go to our blog.

Disclosure Timeline

  • Feb 9th, 2017 - Reported the issue to package owner.
  • Feb 11th, 2017 - Issue acknowledged by package owner.
  • April 12th, 2017 - Fix PR opened by Snyk Security Team.
  • May 15th, 2017 - Vulnerability published.
  • May 16th, 2017 - Issue fixed and version 2.0.0 released.
  • May 21th, 2017 - Patches released for versions >=0.7.1, <=1.0.0.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ms to version 2.0.0 or higher.

References

low severity

Arbitrary Code Injection

  • Vulnerable module: underscore
  • Introduced through: openlayers@4.1.1

Detailed paths

  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 nomnom@1.8.1 underscore@1.6.0
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 closure-util@1.18.0 nomnom@1.8.1 underscore@1.6.0
  • Introduced through: ngx-openlayers@0.6.10 openlayers@4.1.1 jsdoc@3.4.3 underscore@1.8.3

Overview

underscore is a JavaScript's functional programming helper library.

Affected versions of this package are vulnerable to Arbitrary Code Injection via the template function, particularly when the variable option is taken from _.templateSettings as it is not sanitized.

PoC

const _ = require('underscore');
_.templateSettings.variable = "a = this.process.mainModule.require('child_process').execSync('touch HELLO')";
const t = _.template("")();

Remediation

Upgrade underscore to version 1.13.0-2, 1.12.1 or higher.

References