express-stormpath@4.0.0

Vulnerabilities

14 via 20 paths

Dependencies

290

Source

npm

Find, fix and prevent vulnerabilities in your code.

Severity
  • 5
  • 7
  • 2
Status
  • 14
  • 0
  • 0

high severity

Remote Memory Exposure

  • Vulnerable module: bl
  • Introduced through: stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5

Detailed paths

  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 request@2.74.0 bl@1.1.2

Overview

bl is a library that allows you to collect buffers and access with a standard readable buffer interface.

Affected versions of this package are vulnerable to Remote Memory Exposure. If user input ends up in consume() argument and can become negative, BufferList state can be corrupted, tricking it into exposing uninitialized memory via regular .slice() calls.

PoC by chalker

const { BufferList } = require('bl')
const secret = require('crypto').randomBytes(256)
for (let i = 0; i < 1e6; i++) {
  const clone = Buffer.from(secret)
  const bl = new BufferList()
  bl.append(Buffer.from('a'))
  bl.consume(-1024)
  const buf = bl.slice(1)
  if (buf.indexOf(clone) !== -1) {
    console.error(`Match (at ${i})`, buf)
  }
}

Remediation

Upgrade bl to version 2.2.1, 3.0.1, 4.0.3, 1.2.3 or higher.

References

high severity

Sandbox Bypass

  • Vulnerable module: constantinople
  • Introduced through: jade@1.11.0

Detailed paths

  • Introduced through: express-stormpath@4.0.0 jade@1.11.0 constantinople@3.0.2

Overview

constantinople determines whether a JavaScript expression evaluates to a constant (using acorn).

Affected versions of this package are vulnerable to a sandbox bypass which can lead to arbitrary code execution.

Remediation

Upgrade constantinople to version 3.1.1 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: deep-extend
  • Introduced through: deep-extend@0.4.2 and stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5

Detailed paths

  • Introduced through: express-stormpath@4.0.0 deep-extend@0.4.2
    Remediation: Upgrade to deep-extend@0.5.1.
  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 deep-extend@0.4.2

Overview

deep-extend is a library for Recursive object extending.

Affected versions of this package are vulnerable to Prototype Pollution. Utilities function in all the listed modules can be tricked into modifying the prototype of "Object" when the attacker control part of the structure passed to these function. This can let an attacker add or modify existing property that will exist on all object.

PoC by HoLyVieR

var merge = require('deep-extend');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';

var a = {};
console.log("Before : " + a.oops);
merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade deep-extend to version 0.5.1 or higher.

References

high severity

Improper minification of non-boolean comparisons

  • Vulnerable module: uglify-js
  • Introduced through: jade@1.11.0

Detailed paths

  • Introduced through: express-stormpath@4.0.0 jade@1.11.0 transformers@2.1.0 uglify-js@2.2.5
    Remediation: Open PR to patch uglify-js@2.2.5.

Overview

uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.

Tom MacWright discovered that UglifyJS versions 2.4.23 and earlier are affected by a vulnerability which allows a specially crafted Javascript file to have altered functionality after minification. This bug was demonstrated by Yan to allow potentially malicious code to be hidden within secure code, activated by minification.

Details

In Boolean algebra, DeMorgan's laws describe the relationships between conjunctions (&&), disjunctions (||) and negations (!). In Javascript form, they state that:

 !(a && b) === (!a) || (!b)
 !(a || b) === (!a) && (!b)

The law does not hold true when one of the values is not a boolean however.

Vulnerable versions of UglifyJS do not account for this restriction, and erroneously apply the laws to a statement if it can be reduced in length by it.

Consider this authentication function:

function isTokenValid(user) {
    var timeLeft =
        !!config && // config object exists
        !!user.token && // user object has a token
        !user.token.invalidated && // token is not explicitly invalidated
        !config.uninitialized && // config is initialized
        !config.ignoreTimestamps && // don't ignore timestamps
        getTimeLeft(user.token.expiry); // > 0 if expiration is in the future

    // The token must not be expired
    return timeLeft > 0;
}

function getTimeLeft(expiry) {
  return expiry - getSystemTime();
}

When minified with a vulnerable version of UglifyJS, it will produce the following insecure output, where a token will never expire:

( Formatted for readability )

function isTokenValid(user) {
    var timeLeft = !(                       // negation
        !config                             // config object does not exist
        || !user.token                      // user object does not have a token
        || user.token.invalidated           // token is explicitly invalidated
        || config.uninitialized             // config isn't initialized
        || config.ignoreTimestamps          // ignore timestamps
        || !getTimeLeft(user.token.expiry)  // > 0 if expiration is in the future
    );
    return timeLeft > 0
}

function getTimeLeft(expiry) {
    return expiry - getSystemTime()
}

Remediation

Upgrade UglifyJS to version 2.4.24 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: underscore.string
  • Introduced through: stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5

Detailed paths

  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 underscore.string@3.2.3

Overview

underscore.string is a Javascript lacks complete string manipulation operations.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It parses dates using regex strings, which may cause a slowdown of 2 seconds per 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

There is no fixed version for underscore.string.

References

medium severity

Prototype Pollution

  • Vulnerable module: dot-object
  • Introduced through: dot-object@1.9.0 and stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5

Detailed paths

  • Introduced through: express-stormpath@4.0.0 dot-object@1.9.0
    Remediation: Upgrade to dot-object@2.1.3.
  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 dot-object@1.9.0

Overview

dot-object is a module that makes it possible to transform javascript objects using dot notation.

Affected versions of this package are vulnerable to Prototype Pollution. The set function could be tricked into adding or modifying properties of Object.prototype using a __proto__ payload.

PoC by JHU System Security Lab

var a = require("dot-object")
var path = "__proto__";
var val = {toString:"JHU"}
a.set(path,val,{},true);
console.log({}.toString);

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade dot-object to version 2.1.3 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: hoek
  • Introduced through: stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5

Detailed paths

  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 request@2.74.0 hawk@3.1.3 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 request@2.74.0 hawk@3.1.3 boom@2.10.1 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 request@2.74.0 hawk@3.1.3 sntp@1.0.9 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 request@2.74.0 hawk@3.1.3 cryptiles@2.0.5 boom@2.10.1 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.

Overview

hoek is an Utility methods for the hapi ecosystem.

Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.

PoC by Olivier Arteau (HoLyVieR)

var Hoek = require('hoek');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';

var a = {};
console.log("Before : " + a.oops);
Hoek.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade hoek to version 4.2.1, 5.0.3 or higher.

References

medium severity

Signature Verification Bypass

  • Vulnerable module: jwt-simple
  • Introduced through: stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5

Detailed paths

  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 jwt-simple@0.4.1

Overview

jwt-simple is a JWT(JSON Web Token) encode and decode module.

Affected versions of this package are vulnerable to Signature Verification Bypass. If no algorithm is specified in the decode() function, the packages uses the algorithm in the JWT to decode tokens. This allows an attacker to create a HS256 (symmetric algorithm) JWT with the server's public key as secret, and the package will verify it as HS256 instead of RS256 (asymmetric algorithm).

Remediation

Upgrade jwt-simple to version 0.5.3 or higher.

References

medium severity

Uninititialized Memory Exposure

  • Vulnerable module: njwt
  • Introduced through: njwt@0.4.1 and stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5

Detailed paths

  • Introduced through: express-stormpath@4.0.0 njwt@0.4.1
    Remediation: Upgrade to njwt@1.0.0.
  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 njwt@0.4.1

Overview

njwt is the cleanest JSON Web Token (JWT) library for Node.js developers..

Affected versions of this package are vulnerable to Uninitialized Memory Exposure. A malicious user could extract sensitive data from uninitialized memory or to cause a DoS by passing in a large number, in setups where typed user input can be passed.

Note Uninitialized Memory Exposure impacts only Node.js 6.x or lower, Denial of Service impacts any Node.js version.

Details

The Buffer class on Node.js is a mutable array of binary data, and can be initialized with a string, array or number.

const buf1 = new Buffer([1,2,3]);
// creates a buffer containing [01, 02, 03]
const buf2 = new Buffer('test');
// creates a buffer containing ASCII bytes [74, 65, 73, 74]
const buf3 = new Buffer(10);
// creates a buffer of length 10

The first two variants simply create a binary representation of the value it received. The last one, however, pre-allocates a buffer of the specified size, making it a useful buffer, especially when reading data from a stream. When using the number constructor of Buffer, it will allocate the memory, but will not fill it with zeros. Instead, the allocated buffer will hold whatever was in memory at the time. If the buffer is not zeroed by using buf.fill(0), it may leak sensitive information like keys, source code, and system info.

Remediation

There is no fix version for njwt.

References

medium severity
new

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: redis
  • Introduced through: stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5

Detailed paths

  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 redis@2.6.5

Overview

redis is an A high performance Redis client.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). When a client is in monitoring mode, monitor_regex, which is used to detected monitor messages` could cause exponential backtracking on some strings, leading to denial of service.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade redis to version 3.1.1 or higher.

References

medium severity

Uninitialized Memory Exposure

  • Vulnerable module: tunnel-agent
  • Introduced through: stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5

Detailed paths

  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 request@2.74.0 tunnel-agent@0.4.3
    Remediation: Open PR to patch tunnel-agent@0.4.3.

Overview

tunnel-agent is HTTP proxy tunneling agent. Affected versions of the package are vulnerable to Uninitialized Memory Exposure.

A possible memory disclosure vulnerability exists when a value of type number is used to set the proxy.auth option of a request request and results in a possible uninitialized memory exposures in the request body.

This is a result of unobstructed use of the Buffer constructor, whose insecure default constructor increases the odds of memory leakage.

Details

Constructing a Buffer class with integer N creates a Buffer of length N with raw (not "zero-ed") memory.

In the following example, the first call would allocate 100 bytes of memory, while the second example will allocate the memory needed for the string "100":

// uninitialized Buffer of length 100
x = new Buffer(100);
// initialized Buffer with value of '100'
x = new Buffer('100');

tunnel-agent's request construction uses the default Buffer constructor as-is, making it easy to append uninitialized memory to an existing list. If the value of the buffer list is exposed to users, it may expose raw server side memory, potentially holding secrets, private data and code. This is a similar vulnerability to the infamous Heartbleed flaw in OpenSSL.

Proof of concept by ChALkeR

require('request')({
  method: 'GET',
  uri: 'http://www.example.com',
  tunnel: true,
  proxy:{
      protocol: 'http:',
      host:"127.0.0.1",
      port:8080,
      auth:80
  }
});

You can read more about the insecure Buffer behavior on our blog.

Similar vulnerabilities were discovered in request, mongoose, ws and sequelize.

Remediation

Upgrade tunnel-agent to version 0.6.0 or higher. Note This is vulnerable only for Node <=4

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: uglify-js
  • Introduced through: jade@1.11.0

Detailed paths

  • Introduced through: express-stormpath@4.0.0 jade@1.11.0 transformers@2.1.0 uglify-js@2.2.5
    Remediation: Open PR to patch uglify-js@2.2.5.

Overview

The parse() function in the uglify-js package prior to version 2.6.0 is vulnerable to regular expression denial of service (ReDoS) attacks when long inputs of certain patterns are processed.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade to version 2.6.0 or greater. If a direct dependency update is not possible, use snyk wizard to patch this vulnerability.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: clean-css
  • Introduced through: jade@1.11.0

Detailed paths

  • Introduced through: express-stormpath@4.0.0 jade@1.11.0 clean-css@3.4.28

Overview

clean-css is a fast and efficient CSS optimizer for Node.js platform and any modern browser.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). attacks. This can cause an impact of about 10 seconds matching time for data 70k characters long.

Disclosure Timeline

  • Feb 15th, 2018 - Initial Disclosure to package owner
  • Feb 20th, 2018 - Initial Response from package owner
  • Mar 6th, 2018 - Fix issued
  • Mar 7th, 2018 - Vulnerability published

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade clean-css to version 4.1.11 or higher.

References

low severity

Arbitrary Code Injection

  • Vulnerable module: underscore
  • Introduced through: stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5

Detailed paths

  • Introduced through: express-stormpath@4.0.0 stormpath@github:stormpath/stormpath-sdk-node#1.0.0-rc5 underscore@1.5.2

Overview

underscore is a JavaScript's functional programming helper library.

Affected versions of this package are vulnerable to Arbitrary Code Injection via the template function, particularly when the variable option is taken from _.templateSettings as it is not sanitized.

PoC

const _ = require('underscore');
_.templateSettings.variable = "a = this.process.mainModule.require('child_process').execSync('touch HELLO')";
const t = _.template("")();

Remediation

Upgrade underscore to version 1.13.0-2, 1.12.1 or higher.

References