buche@0.1.6

Vulnerabilities

101 via 141 paths

Dependencies

712

Source

npm

Find, fix and prevent vulnerabilities in your code.

Severity
  • 68
  • 30
  • 3
Status
  • 101
  • 0
  • 0

high severity

Arbitrary Code Execution

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to buche@0.2.0.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Arbitrary Code Execution. Opening a BrowserView with sandbox: true or nativeWindowOpen: true and nodeIntegration: false results in a webContents where window.open() can be called and the newly opened child will have nodeIntegration enabled.

Remediation

Upgrade electron to version 2.0.17, 3.0.15, 3.1.3, 4.0.4, 5.0.0-beta.2 or higher.

If for some reason you are unable to upgrade your Electron version, you can mitigate this issue by disabling all child web contents: view.webContents.on('-add-new-contents', e => e.preventDefault());

References

high severity

Arbitrary Code Execution

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@5.0.0.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Arbitrary Code Execution due to Node being enabled in a webview because the default values of nodeIntegration and webviewTag were set to true when they where undefined by a user. The fix allows users to prevent Node and webview being enabled, when undefined, by setting the default values of nodeIntegration and webviewTag to false.

Remediation

Upgrade electron to version 5.0.0-beta.1 or higher.

References

high severity

Heap Buffer Overflow

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.1.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Heap Buffer Overflow via WebAudio.

Remediation

Upgrade electron to version 11.4.0, 10.4.1 or higher.

References

high severity

Heap Overflow

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.10.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Heap Overflow. A Heap buffer overflow exists in the media component of Google Chrome, which also affects chromium.

Remediation

Upgrade electron to version 6.1.10, 7.2.2, 8.2.1 or higher.

References

high severity

Heap-based Buffer Overflow

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@8.5.3.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Heap-based Buffer Overflow in Freetype.

Remediation

Upgrade electron to version 8.5.3, 9.3.3, 10.1.5 or higher.

References

high severity

Heap-based Buffer Overflow

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.0.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Heap-based Buffer Overflow. A heap buffer overflow flaw was found in the UI component of the Chromium browser.

Remediation

Upgrade electron to version 9.4.0, 10.2.0 or higher.

References

high severity
new

Heap-based Buffer Overflow

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Heap-based Buffer Overflow via V8.

Remediation

Upgrade electron to version 10.4.4, 11.4.4, 12.0.6 or higher.

References

high severity

Improper Access Control

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.0.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Improper Access Control. An insufficient policy enforcement flaw was found in the networking component of chromium.

Remediation

Upgrade electron to version 9.4.0, 10.1.7 or higher.

References

high severity

Improper Access Control

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.10.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Improper Access Control. It has an inappropriate implementation in V8.

Remediation

Upgrade electron to version 6.1.10, 7.2.2, 8.2.1 or higher.

References

high severity

Improper Input Validation

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.0.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Improper Input Validation. An insufficient data validation flaw was found in the WASM component of the Chromium browser.

Remediation

Upgrade electron to version 9.4.0, 10.1.7 or higher.

References

high severity

Improper Input Validation

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.2.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Improper Input Validation. It allowed a remote attacker to leak cross-origin data via a crafted HTML page.

Remediation

Upgrade electron to version 10.4.2, 11.4.1 or higher.

References

high severity

Improper Validation

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Improper Validation. The value of a node was accessed without prior HasValue check. With WebAssembly this node is not guaranteed to be a value.

Remediation

Upgrade electron to version 10.1.6, 9.4.4 or higher.

References

high severity

Insecure Defaults

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.1.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Insecure Defaults. Insufficient policy enforcement in the File System API of chromium allows a remote attacker to bypass filesystem restrictions via a crafted HTML page.

Remediation

Upgrade electron to version 10.4.1, 11.4.1 or higher.

References

high severity

Insufficient Validation

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.0.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Insufficient Validation in V8.

Remediation

Upgrade electron to version 9.4.0, 10.2.0 or higher.

References

high severity

Insufficient Validation

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.2.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Insufficient Validation via an unknown issue in chromium.

Remediation

Upgrade electron to version 9.4.2, 10.3.1, 11.2.2 or higher.

References

high severity
new

Integer Overflow

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Integer Overflow via Chromium in Mojo.

Remediation

Upgrade electron to version 10.4.4 or higher.

References

high severity
new

Integer Overflow or Wraparound

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Integer Overflow or Wraparound via the Mojo component of chromium.

Remediation

Upgrade electron to version 10.4.4, 12.0.6 or higher.

References

high severity
new

Out-of-bounds

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Out-of-bounds via the V8 component in Chrome.

Remediation

Upgrade electron to version 11.4.4, 10.4.4, 12.0.6 or higher.

References

high severity

Out-of-Bounds

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.1.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Out-of-Bounds. Object lifecycle issue in audio.

Remediation

Upgrade electron to version 11.4.0, 10.4.1 or higher.

References

high severity

Out-of-Bounds

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.2.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Out-of-Bounds. Out of bounds memory access in V8 in Google Chrome prior to 89.0.4389.72 allowed a remote attacker to potentially perform out of bounds memory access via a crafted HTML page. This vulnerability relates to an electron component.

Remediation

Upgrade electron to version 10.4.2, 11.4.1 or higher.

References

high severity

Out-of-bounds Read

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.1.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Out-of-bounds Read. An unknown vunerability exists in Chrome which affects electron.

Remediation

Upgrade electron to version 9.4.1, 10.3.2 or higher.

References

high severity
new

Out-of-bounds Read

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Out-of-bounds Read via the IPC in chromium.

Remediation

Upgrade electron to version 11.4.4, 10.4.4 or higher.

References

high severity

Out-of-bounds Read

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.10.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Out-of-bounds Read. The input to sctp_load_addresses_from_init is verified by calling sctp_arethere_unrecognized_parameters, however there is a difference in how these functions handle parameter bounds. The function sctp_arethere_unrecognized_parameters does not process a parameter that is partially outside of the limit of the chunk, meanwhile, sctp_load_addresses_from_init will continue processing until a parameter that is entirely outside of the chunk occurs.

This means that the last parameter of a chunk is not always verified, which can lead to parameters with very short plen values being processed by sctp_load_addresses_from_init. This can lead to out-of-bounds reads whenever the plen is subtracted from the header len.

Remediation

Upgrade electron to version 6.1.10, 7.2.2, 8.2.0 or higher.

References

high severity

Out-of-bounds Write

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.1.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Out-of-bounds Write via a data race in the audio component. A remote attacker could potentially exploit heap corruption using a crafted HTML page.

Remediation

Upgrade electron to version 10.4.1, 11.4.1 or higher.

References

high severity

Privilege Escalation

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@7.2.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Privilege Escalation. This is a context isolation bypass, meaning that code running in the main world context in the renderer can reach into the isolated Electron context and perform privileged actions.

##Note: Only apps using contextIsolation are affected.

Remediation

Upgrade electron to version 7.2.4, 8.2.4 or higher.

References

high severity

Privilege Escalation

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@7.2.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Privilege Escalation. This is a context isolation bypass, meaning that code running in the main world context in the renderer can reach into the isolated Electron context and perform privileged actions.

##Note: Only apps using both contextIsolation and contextBridge are affected.

Remediation

Upgrade electron to version 7.2.4, 8.2.4 or higher.

References

high severity

Privilege Escalation

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.11.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Privilege Escalation. This is a context isolation bypass, meaning that code running in the main world context in the renderer can reach into the isolated Electron context and perform privileged actions.

##Note: Only apps using contextIsolation are affected.

Remediation

Upgrade electron to version 6.1.11, 7.2.4, 8.2.4 or higher.

References

high severity

Site Isolation Bypass

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@7.2.2.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Site Isolation Bypass. parent_execution_origin_ is provided from parent's RenderFrameHostImpl::last_committed_origin_ that is set during navigation commit. Worker creation IPC from the renderer to browser could race with navigation commit, and could see the wrong last committed origin.

Remediation

Upgrade electron to version 7.2.2, 8.2.1 or higher.

References

high severity

Type Confusion

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@7.3.1.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Type Confusion in V8.

Remediation

Upgrade electron to version 7.3.1 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@8.5.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free via the site isolation.

Remediation

Upgrade electron to version 8.5.4, 9.3.5, 10.1.6 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.0.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. A use after free flaw was found in the PPAPI component of the Chromium browser.

Remediation

Upgrade electron to version 9.4.0, 10.2.0 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. Since JavaScript may detach the underlying buffers, they need to be checked to ensure they're still valid before using them for decoding.

Remediation

Upgrade electron to version 10.2.0, 9.4.4 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.1.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. An unknown vunerability exists in Chrome.

Remediation

Upgrade electron to version 9.4.1, 10.3.2 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free in Media.

Remediation

Upgrade electron to version 11.2.1, 9.4.4 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. It hands sub-queries with both a correlated WHERE clause and a HAVING 0 clause where the parent query is itself an aggregate.

Remediation

Upgrade electron to version 11.2.1, 9.4.4 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@11.2.2.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free via handling of cookies.

Remediation

Upgrade electron to version 9.4.2, 10.3.1, 11.2.2 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.1.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. When a LayoutInline is removed, LineBoxList::DirtyLinesFromChangedChild tries to mark affected RootInlineBox dirty.

When the |LayoutInline| to be removed is culled, it tries to find the RootInlineBox from its previous siblings, then look for its previous and next RootInlineBoxes.

Occasionally, the next next line of the previous sibling is wrapped at the LayoutInline, and that its LineBreakObj() holds the reference to the LayoutInline. This patch marks such RootInlineBox dirty.

Remediation

Upgrade electron to version 11.4.0, 10.4.1 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.1.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free in WebRTC.

Remediation

Upgrade electron to version 11.4.0, 10.4.1 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.2.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. It allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.

Remediation

Upgrade electron to version 10.4.2, 11.4.1 or higher.

References

high severity
new

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free via a vulnerability that exists in Blink in Chromium. A remote attacker can trick the victim to visit a specially crafted web page, trigger a use-after-free error and execute arbitrary code on the system.

Remediation

Upgrade electron to version 11.4.4, 10.4.4 or higher.

References

high severity
new

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free via Chrome which allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.

Remediation

Upgrade electron to version 12.0.5, 11.4.4, 10.4.4 or higher.

References

high severity
new

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free via chromium which allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.

Remediation

Upgrade electron to version 12.0.5, 11.4.4, 10.4.4 or higher.

References

high severity
new

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free via Aura in Google Chrome which allowed a remote attacker who had compromised the renderer process to potentially exploit heap corruption via a crafted HTML page.

Remediation

Upgrade electron to version 12.0.5, 11.4.4, 10.4.4 or higher.

References

high severity
new

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free via the Navigation component of chromium.

Remediation

Upgrade electron to version 10.4.4, 11.4.4, 12.0.6 or higher.

References

high severity
new

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free in the chromium extensions resource.

Remediation

Upgrade electron to version 11.4.4, 10.4.4 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to buche@0.2.0.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free via the Chromium FileReader.

Note: This vulnerability affects all software based on Chromium, including Electron.

Remediation

Upgrade electron to version 2.0.18, 3.0.16, 3.1.6, 4.0.8 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.10.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. Multiple user after free vulnerabilities exists in the WebAudio component of chromium.

Remediation

Upgrade electron to version 6.1.10, 7.2.2, 8.2.1 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.10.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. It allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.

Remediation

Upgrade electron to version 6.1.10, 7.2.2, 8.2.1 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.10.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free via the audio component. It allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.

Remediation

Upgrade electron to version 6.1.10, 7.2.2, 8.2.1 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@7.2.2.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free via the audio component.

Remediation

Upgrade electron to version 8.2.1, 7.2.2 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.10.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. FileChooserImpl can outlive ListenerProxy leading to a crash.

Remediation

Upgrade electron to version 6.1.10, 7.2.2, 8.2.0 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.10.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. Initialize() could potentially run twice in MojoVideoEncodeAcceleratorService.

Remediation

Upgrade electron to version 6.1.10, 7.2.2, 8.2.1 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.10.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. It allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.

Remediation

Upgrade electron to version 6.1.10, 7.2.2, 8.2.0 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.10.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. An AudioContext is considered to have activity if it's not closed. Previously, suspended contexts were considered has having no activity, but that's not quite true since the context can be resumed at any time after. This would allow contexts to be collected prematurely even though the context was resumed. This causes the audio thread to access objects that are possibly deleted.

Remediation

Upgrade electron to version 6.1.10, 7.2.2, 8.0.0-beta.6 or higher.

References

high severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@8.3.1.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free in WebRTC.

Remediation

Upgrade electron to version 8.3.1 or higher.

References

high severity

Command Injection

  • Vulnerable module: lodash
  • Introduced through: npm@5.10.0 and quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 lodash@3.10.1

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Command Injection via template.

PoC

var _ = require('lodash');

_.template('', { variable: '){console.log(process.env)}; with(obj' })()

Remediation

Upgrade lodash to version 4.17.21 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: npm@5.10.0 and quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 lodash@3.10.1

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The function defaultsDeep could be tricked into adding or modifying properties of Object.prototype using a constructor payload.

PoC by Snyk

const mergeFn = require('lodash').defaultsDeep;
const payload = '{"constructor": {"prototype": {"a0": true}}}'

function check() {
    mergeFn({}, JSON.parse(payload));
    if (({})[`a0`] === true) {
        console.log(`Vulnerable to Prototype Pollution via ${payload}`);
    }
  }

check();

For more information, check out our blog post

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.12 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: npm@5.10.0 and quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 lodash@3.10.1

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution in zipObjectDeep due to an incomplete fix for CVE-2020-8203.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.20 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: npm@5.10.0 and quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 lodash@3.10.1

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution via the setWith and set functions.

PoC by awarau

  • Create a JS file with this contents:
    lod = require('lodash')
    lod.setWith({}, "__proto__[test]", "123")
    lod.set({}, "__proto__[test2]", "456")
    console.log(Object.prototype)
    
  • Execute it with node
  • Observe that test and test2 is now in the Object.prototype.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.17 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: npm@5.10.0 and quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 lodash@3.10.1

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The functions merge, mergeWith, and defaultsDeep could be tricked into adding or modifying properties of Object.prototype. This is due to an incomplete fix to CVE-2018-3721.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.11 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: minimatch
  • Introduced through: quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 minimatch@2.0.10

Overview

minimatch is a minimal matching utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via complicated and illegal regexes.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade minimatch to version 3.0.2 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: minimatch
  • Introduced through: quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 minimatch@2.0.10
    Remediation: Open PR to patch minimatch@2.0.10.

Overview

minimatch is a minimal matching utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS).

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade minimatch to version 3.0.2 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: npm
  • Introduced through: npm@5.10.0

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0
    Remediation: Upgrade to npm@6.13.4.

Overview

npm is a package manager for JavaScript.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. It fails to prevent existing globally-installed binaries to be overwritten by other package installations. For example, if a package was installed globally and created a serve binary, any subsequent installs of packages that also create a serve binary would overwrite the first binary. This only affects files in /usr/local/bin.

For npm, this behaviour is still allowed in local installations and also through install scripts. This vulnerability bypasses a user using the --ignore-scripts install option.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade npm to version 6.13.4 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: npm
  • Introduced through: npm@5.10.0

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0
    Remediation: Upgrade to npm@6.13.3.

Overview

npm is a package manager for JavaScript.

Affected versions of this package are vulnerable to Arbitrary File Write. It fails to prevent access to folders outside of the intended node_modules folder through the bin field.

For npm, a properly constructed entry in the package.json bin field would allow a package publisher to modify and/or gain access to arbitrary files on a user’s system when the package is installed. This behaviour is possible through install scripts. This vulnerability bypasses a user using the --ignore-scripts install option.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade npm to version 6.13.3 or higher.

References

high severity

Arbitrary Code Injection

  • Vulnerable module: open
  • Introduced through: open@0.0.5

Detailed paths

  • Introduced through: buche@0.1.6 open@0.0.5
    Remediation: Upgrade to open@6.0.0.

Overview

open is a cross platform package that opens stuff like URLs, files, executables.

Affected versions of this package are vulnerable to Arbitrary Code Injection when unsanitized user input is passed in.

The package does come with the following warning in the readme:

The same care should be taken when calling open as if you were calling child_process.exec directly. If it is an executable it will run in a new shell.

The package open is replacing the opn package, which is now deprecated. The older versions of open are vulnerable.

Note: Upgrading open to the last version will prevent this vulnerability but is also likely to have unwanted effects since it now has a very different API.

Remediation

Upgrade open to version 6.0.0 or higher.

References

high severity

Arbitrary Command Injection

  • Vulnerable module: open
  • Introduced through: open@0.0.5

Detailed paths

  • Introduced through: buche@0.1.6 open@0.0.5
    Remediation: Upgrade to open@6.0.0.

Overview

open is a cross platform package that opens stuff like URLs, files, executables.

Affected versions of this package are vulnerable to Arbitrary Command Injection. Urls are not properly escaped before concatenating them into the command that is opened using exec().

Note: Upgrading open to the last version will prevent this vulnerability but is also likely to have unwanted effects since it now has a very different API.

Remediation

Upgrade open to version 6.0.0 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ssri
  • Introduced through: npm@5.10.0

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 ssri@5.3.0
    Remediation: Upgrade to npm@6.0.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 cacache@10.0.4 ssri@5.3.0
    Remediation: Upgrade to npm@6.0.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 npm-registry-client@8.6.0 ssri@5.3.0
  • Introduced through: buche@0.1.6 npm@5.10.0 pacote@7.6.1 ssri@5.3.0
    Remediation: Upgrade to npm@6.0.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 pacote@7.6.1 cacache@10.0.4 ssri@5.3.0
    Remediation: Upgrade to npm@6.0.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 npm-registry-fetch@1.1.1 make-fetch-happen@3.0.0 ssri@5.3.0
    Remediation: Upgrade to npm@6.6.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 pacote@7.6.1 make-fetch-happen@2.6.0 ssri@5.3.0
    Remediation: Upgrade to npm@6.0.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 npm-registry-fetch@1.1.1 make-fetch-happen@3.0.0 cacache@10.0.4 ssri@5.3.0
    Remediation: Upgrade to npm@6.6.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 pacote@7.6.1 make-fetch-happen@2.6.0 cacache@10.0.4 ssri@5.3.0
    Remediation: Upgrade to npm@6.0.0.

Overview

ssri is a Standard Subresource Integrity library -- parses, serializes, generates, and verifies integrity metadata according to the SRI spec.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). Malicious SRIs could take an extremely long time to process, leading to denial of service. This issue only affects consumers using the strict option.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ssri to version 8.0.1, 6.0.2 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ssri
  • Introduced through: npm@5.10.0

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 ssri@5.3.0
    Remediation: Upgrade to npm@6.0.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 cacache@10.0.4 ssri@5.3.0
    Remediation: Upgrade to npm@6.0.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 npm-registry-client@8.6.0 ssri@5.3.0
  • Introduced through: buche@0.1.6 npm@5.10.0 pacote@7.6.1 ssri@5.3.0
    Remediation: Upgrade to npm@6.0.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 pacote@7.6.1 cacache@10.0.4 ssri@5.3.0
    Remediation: Upgrade to npm@6.0.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 npm-registry-fetch@1.1.1 make-fetch-happen@3.0.0 ssri@5.3.0
    Remediation: Upgrade to npm@6.6.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 pacote@7.6.1 make-fetch-happen@2.6.0 ssri@5.3.0
    Remediation: Upgrade to npm@6.0.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 npm-registry-fetch@1.1.1 make-fetch-happen@3.0.0 cacache@10.0.4 ssri@5.3.0
    Remediation: Upgrade to npm@6.6.0.
  • Introduced through: buche@0.1.6 npm@5.10.0 pacote@7.6.1 make-fetch-happen@2.6.0 cacache@10.0.4 ssri@5.3.0
    Remediation: Upgrade to npm@6.0.0.

Overview

ssri is a Standard Subresource Integrity library -- parses, serializes, generates, and verifies integrity metadata according to the SRI spec.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). ssri processes SRIs using a regular expression which is vulnerable to a denial of service. Malicious SRIs could take an extremely long time to process, leading to denial of service. This issue only affects consumers using the strict option.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ssri to version 6.0.2, 8.0.1 or higher.

References

medium severity

Time of Check Time of Use (TOCTOU)

  • Vulnerable module: chownr
  • Introduced through: npm@5.10.0

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 chownr@1.0.1
    Remediation: Upgrade to npm@6.6.0.

Overview

chownr is a package that takes the same arguments as fs.chown()

Affected versions of this package are vulnerable to Time of Check Time of Use (TOCTOU). Affected versions of this package are vulnerable toTime of Check Time of Use (TOCTOU) attacks.

It does not dereference symbolic links and changes the owner of the link, which can trick it into descending into unintended trees if a non-symlink is replaced by a symlink at a critical moment:

      fs.lstat(pathChild, function(er, stats) {
        if (er)
          return cb(er)
        if (!stats.isSymbolicLink())
          chownr(pathChild, uid, gid, then)

Remediation

Upgrade chownr to version 1.1.0 or higher.

References

medium severity

Access Restriction Bypass

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.3.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Access Restriction Bypass. Inappropriate implementation in Referrer in Google Chrome prior to 89.0.4389.72 allowed a remote attacker to bypass navigation restrictions via a crafted HTML page. This vulnerability relates to an electron component.

Remediation

Upgrade electron to version 10.4.3, 11.4.1 or higher.

References

medium severity

Arbitrary File Read

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@7.2.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Arbitrary File Read. It allows arbitrary local file read by defining unsafe window options on a child window opened via window.open.

Remediation

Upgrade electron to version 7.2.4, 8.2.4 or higher.

References

medium severity

Buffer Underflow

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.10.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Buffer Underflow. Since there may be multiple instance of DWriteFontProxyImpl instantiated for multiple RenderProcessHosts, and DWriteFontProxyImpl::GetUniqueNameLookupTable may access DWriteFontLookupTableBuilder::QueueShareMemoryRegionWhenReady from separate threads, there may be race conditions around the pending_callbacks_ member of DWriteFontLookupTableBuilder.

Remediation

Upgrade electron to version 6.1.10, 7.2.2, 8.2.0 or higher.

References

medium severity

Improper Input Validation

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Improper Input Validation via the File System API.

Remediation

Upgrade electron to version 11.2.1, 9.4.4 or higher.

References

medium severity
new

Improper Input Validation

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Improper Input Validation due to insufficient data validation that exists in V8.

Remediation

Upgrade electron to version 10.4.4, 12.0.6 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.1.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Information Exposure. When a BigInt is right-shifted the backing store is not properly cleared, allowing uninitialized memory to be read.

Remediation

Upgrade electron to version 9.4.1, 10.3.2 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.0.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Information Exposure. IPC messages sent from the main process to a subframe in the renderer process, through webContents.sendToFrame, event.reply or when using the remote module, can in some cases be delivered to the wrong frame.

Remediation

Upgrade electron to version 9.4.0, 10.2.0, 11.1.0, 12.0.0-beta.9 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.1.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Information Exposure. The is a side-channel information leakage in autofill.

Remediation

Upgrade electron to version 11.4.0, 10.4.1 or higher.

References

medium severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@9.4.2.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free via the Blink component in chromium.

Remediation

Upgrade electron to version 9.4.2, 10.3.1, 11.2.2 or higher.

References

medium severity

Use After Free

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@6.1.10.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Use After Free. The rendering_orphan_handlers_ and deletable_orphan_handlers_ handlers can hold references to the context after BaseAudioContext is destroyed.

Remediation

Upgrade electron to version 6.1.10, 7.2.2, 8.2.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: glob-parent
  • Introduced through: quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 chokidar@1.7.0 glob-parent@2.0.0
  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 chokidar@1.7.0 anymatch@1.3.2 micromatch@2.3.11 parse-glob@3.0.4 glob-base@0.3.0 glob-parent@2.0.0

Overview

glob-parent is a package that helps extracting the non-magic parent path from a glob string.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The enclosure regex used to check for strings ending in enclosure containing path separator.

PoC by Yeting Li

var globParent = require("glob-parent")
function build_attack(n) {
var ret = "{"
for (var i = 0; i < n; i++) {
ret += "/"
}

return ret;
}

globParent(build_attack(5000));

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade glob-parent to version 5.1.2 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: highlight.js
  • Introduced through: highlight.js@9.18.5

Detailed paths

  • Introduced through: buche@0.1.6 highlight.js@9.18.5
    Remediation: Upgrade to highlight.js@10.4.1.

Overview

highlight.js is a syntax highlighter written in JavaScript. It works in the browser as well as on the server. It works with pretty much any markup, doesn’t depend on any framework, and has automatic language detection.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via Exponential and Polynomial catastrophic backtracking in multiple language highlighting.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade highlight.js to version 10.4.1 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: jquery
  • Introduced through: jquery@2.2.4

Detailed paths

  • Introduced through: buche@0.1.6 jquery@2.2.4
    Remediation: Upgrade to jquery@3.5.0.

Overview

jquery is a package that makes things like HTML document traversal and manipulation, event handling, animation, and Ajax much simpler with an easy-to-use API that works across a multitude of browsers.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) Passing HTML containing <option> elements from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

ֿInjecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade jquery to version 3.5.0 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: jquery
  • Introduced through: jquery@2.2.4

Detailed paths

  • Introduced through: buche@0.1.6 jquery@2.2.4
    Remediation: Upgrade to jquery@3.5.0.

Overview

jquery is a package that makes things like HTML document traversal and manipulation, event handling, animation, and Ajax much simpler with an easy-to-use API that works across a multitude of browsers.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS). Passing HTML from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code.

Details:

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

ֿInjecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade jquery to version 3.5.0 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: jquery
  • Introduced through: jquery@2.2.4

Detailed paths

  • Introduced through: buche@0.1.6 jquery@2.2.4
    Remediation: Upgrade to jquery@3.0.0.

Overview

jquery is a package that makes things like HTML document traversal and manipulation, event handling, animation, and Ajax much simpler with an easy-to-use API that works across a multitude of browsers.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) attacks when a cross-domain ajax request is performed without the dataType option causing text/javascript responses to be executed.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

ֿInjecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade jquery to version 1.12.2, 2.2.2, 3.0.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: jquery
  • Introduced through: jquery@2.2.4

Detailed paths

  • Introduced through: buche@0.1.6 jquery@2.2.4
    Remediation: Upgrade to jquery@3.4.0.

Overview

jquery is a package that makes things like HTML document traversal and manipulation, event handling, animation, and Ajax much simpler with an easy-to-use API that works across a multitude of browsers.

Affected versions of this package are vulnerable to Prototype Pollution. The extend function can be tricked into modifying the prototype of Object when the attacker controls part of the structure passed to this function. This can let an attacker add or modify an existing property that will then exist on all objects.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade jquery to version 3.4.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: npm@5.10.0 and quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 lodash@3.10.1

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The function zipObjectDeep can be tricked into adding or modifying properties of the Object prototype. These properties will be present on all objects.

PoC

const _ = require('lodash');
_.zipObjectDeep(['__proto__.z'],[123])
console.log(z) // 123

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.16 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: npm@5.10.0 and quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 cli-table2@0.2.0 lodash@3.10.1
    Remediation: Open PR to patch lodash@3.10.1.
  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 lodash@3.10.1
    Remediation: Open PR to patch lodash@3.10.1.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.

PoC by Olivier Arteau (HoLyVieR)

var _= require('lodash');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';

var a = {};
console.log("Before : " + a.oops);
_.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.5 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: lodash
  • Introduced through: npm@5.10.0 and quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 lodash@3.10.1

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber, trim and trimEnd functions.

POC

var lo = require('lodash');

function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}

return ret + "1";
}

var s = build_blank(50000)
var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0)

var time1 = Date.now();
lo.toNumber(s)
var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1)

var time2 = Date.now();
lo.trimEnd(s)
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2)

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade lodash to version 4.17.21 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: lodash
  • Introduced through: npm@5.10.0 and quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 lodash@3.10.1

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It parses dates using regex strings, which may cause a slowdown of 2 seconds per 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade lodash to version 4.17.11 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS )

  • Vulnerable module: marked
  • Introduced through: marked@0.3.19

Detailed paths

  • Introduced through: buche@0.1.6 marked@0.3.19
    Remediation: Upgrade to marked@1.1.1.

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS ). The em regex within src/rules.js file have multiple unused capture groups which could lead to a denial of service attack if user input is reachable.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 1.1.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: marked@0.3.19

Detailed paths

  • Introduced through: buche@0.1.6 marked@0.3.19
    Remediation: Upgrade to marked@0.6.2.

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The inline.text regex may take quadratic time to scan for potential email addresses starting at every point.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 0.6.2 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: marked@0.3.19

Detailed paths

  • Introduced through: buche@0.1.6 marked@0.3.19
    Remediation: Upgrade to marked@0.4.0.

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). A Denial of Service condition could be triggered through exploitation of the heading regex.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 0.4.0 or higher.

References

medium severity

Denial of Service (DoS)

  • Vulnerable module: mem
  • Introduced through: npm@5.10.0

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 lock-verify@2.2.1 @iarna/cli@1.2.0 yargs@8.0.2 os-locale@2.1.0 mem@1.1.0
  • Introduced through: buche@0.1.6 npm@5.10.0 libcipm@1.6.3 lock-verify@2.2.1 @iarna/cli@1.2.0 yargs@8.0.2 os-locale@2.1.0 mem@1.1.0

Overview

mem is an optimization used to speed up consecutive function calls by caching the result of calls with identical input.

Affected versions of this package are vulnerable to Denial of Service (DoS). Old results were deleted from the cache and could cause a memory leak.

details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade mem to version 4.0.0 or higher.

References

medium severity

Insertion of Sensitive Information into Log File

  • Vulnerable module: npm
  • Introduced through: npm@5.10.0

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0
    Remediation: Upgrade to npm@6.14.6.

Overview

npm is a package manager for JavaScript.

Affected versions of this package are vulnerable to Insertion of Sensitive Information into Log File. The CLI supports URLs like <protocol>://[<user>[:<password>]@]<hostname>[:<port>][:][/]<path>. The password value is not redacted and is printed to stdout and also to any generated log files.

Remediation

Upgrade npm to version 6.14.6 or higher.

References

medium severity

Insertion of Sensitive Information into Log File

  • Vulnerable module: npm-registry-fetch
  • Introduced through: npm@5.10.0

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 npm-registry-fetch@1.1.1
    Remediation: Upgrade to npm@6.10.2.

Overview

npm-registry-fetch is a Fetch-based http client for use with npm registry APIs

Affected versions of this package are vulnerable to Insertion of Sensitive Information into Log File through log files. The package supports URLs like <protocol>://[<user>[:<password>]@]<hostname>[:<port>][:][/]<path>. The password value is not redacted and is printed to stdout and also to any generated log files.

Remediation

Upgrade npm-registry-fetch to version 4.0.5, 8.1.1 or higher.

References

medium severity
new

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: path-parse
  • Introduced through: npm@5.10.0, quaint@0.1.3 and others

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 read-package-json@2.1.2 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: buche@0.1.6 npm@5.10.0 npm-registry-client@8.6.0 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: buche@0.1.6 npm@5.10.0 pacote@7.6.1 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: buche@0.1.6 npm@5.10.0 init-package-json@1.10.3 read-package-json@2.1.2 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: buche@0.1.6 npm@5.10.0 libcipm@1.6.3 read-package-json@2.1.2 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: buche@0.1.6 npm@5.10.0 read-installed@4.0.3 read-package-json@2.1.2 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: buche@0.1.6 npm@5.10.0 read-package-tree@5.3.1 read-package-json@2.1.2 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: buche@0.1.6 npm@5.10.0 libcipm@1.6.3 pacote@8.1.6 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: buche@0.1.6 quaint@0.1.3 yargs@6.6.0 read-pkg-up@1.0.1 read-pkg@1.1.0 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: buche@0.1.6 electron@1.8.8 electron-download@3.3.0 nugget@2.0.1 pretty-bytes@1.0.4 meow@3.7.0 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: buche@0.1.6 npm@5.10.0 lock-verify@2.2.1 @iarna/cli@1.2.0 yargs@8.0.2 read-pkg-up@2.0.0 read-pkg@2.0.0 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: buche@0.1.6 electron@1.8.8 electron-download@3.3.0 nugget@2.0.1 pretty-bytes@1.0.4 meow@3.7.0 read-pkg-up@1.0.1 read-pkg@1.1.0 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6
  • Introduced through: buche@0.1.6 npm@5.10.0 libcipm@1.6.3 lock-verify@2.2.1 @iarna/cli@1.2.0 yargs@8.0.2 read-pkg-up@2.0.0 read-pkg@2.0.0 normalize-package-data@2.5.0 resolve@1.20.0 path-parse@1.0.6

Overview

path-parse is a Node.js path.parse() ponyfill

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via splitDeviceRe, splitTailRe, and splitPathRe regular expressions. ReDoS exhibits polynomial worst-case time complexity.

PoC

var pathParse = require('path-parse');
function build_attack(n) {
    var ret = ""
    for (var i = 0; i < n; i++) {
        ret += "/"
    }
    return ret + "◎";
}

for(var i = 1; i <= 5000000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        pathParse(attack_str);
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
 }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

There is no fixed version for path-parse.

References

medium severity

Improper Input Validation

  • Vulnerable module: url-parse
  • Introduced through: quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 quaint@0.1.3 reload@2.4.0 url-parse@1.4.7

Overview

url-parse is a Small footprint URL parser that works seamlessly across Node.js and browser environments.

Affected versions of this package are vulnerable to Improper Input Validation. It mishandles certain uses of backslash such as http:\/ and interprets the URI as a relative path.

Remediation

Upgrade url-parse to version 1.5.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: yargs-parser
  • Introduced through: npm@5.10.0

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0 lock-verify@2.2.1 @iarna/cli@1.2.0 yargs@8.0.2 yargs-parser@7.0.0
  • Introduced through: buche@0.1.6 npm@5.10.0 libcipm@1.6.3 lock-verify@2.2.1 @iarna/cli@1.2.0 yargs@8.0.2 yargs-parser@7.0.0

Overview

yargs-parser is a mighty option parser used by yargs.

Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a __proto__ payload.

Our research team checked several attack vectors to verify this vulnerability:

  1. It could be used for privilege escalation.
  2. The library could be used to parse user input received from different sources:
    • terminal emulators
    • system calls from other code bases
    • CLI RPC servers

PoC by Snyk

const parser = require("yargs-parser");
console.log(parser('--foo.__proto__.bar baz'));
console.log(({}).bar);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade yargs-parser to version 5.0.1, 13.1.2, 15.0.1, 18.1.1 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: braces
  • Introduced through: quaint@0.1.3

Detailed paths

  • Introduced through: buche@0.1.6 quaint@0.1.3 engage@0.0.12 chokidar@1.7.0 anymatch@1.3.2 micromatch@2.3.11 braces@1.8.5

Overview

braces is a Bash-like brace expansion, implemented in JavaScript.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It used a regular expression (^\{(,+(?:(\{,+\})*),*|,*(?:(\{,+\})*),+)\}) in order to detects empty braces. This can cause an impact of about 10 seconds matching time for data 50K characters long.

Disclosure Timeline

  • Feb 15th, 2018 - Initial Disclosure to package owner
  • Feb 16th, 2018 - Initial Response from package owner
  • Feb 18th, 2018 - Fix issued
  • Feb 19th, 2018 - Vulnerability published

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade braces to version 2.3.1 or higher.

References

low severity
new

Out Of Bounds Read

  • Vulnerable module: electron
  • Introduced through: electron@1.8.8

Detailed paths

  • Introduced through: buche@0.1.6 electron@1.8.8
    Remediation: Upgrade to electron@10.4.4.

Overview

electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.

Affected versions of this package are vulnerable to Out Of Bounds Read. Blit11 would clip the destination rectangle with the destination size but ignore the result. gl::ClipRectangle returns false when the rectangles do not intersect at all, indicating the blit can be skipped.

Remediation

Upgrade electron to version 10.4.4, 11.4.4, 12.0.6 or higher.

References

low severity

Unauthorized File Access

  • Vulnerable module: npm
  • Introduced through: npm@5.10.0

Detailed paths

  • Introduced through: buche@0.1.6 npm@5.10.0
    Remediation: Upgrade to npm@6.13.3.

Overview

npm is a package manager for JavaScript.

Affected versions of this package are vulnerable to Unauthorized File Access. It is possible for packages to create symlinks to files outside of thenode_modules folder through the bin field upon installation.

For npm, a properly constructed entry in the package.json bin field would allow a package publisher to create a symlink pointing to arbitrary files on a user’s system when the package is installed. This behaviour is possible through install scripts. This vulnerability bypasses a user using the --ignore-scripts install option.

Remediation

Upgrade npm to version 6.13.3 or higher.

References