2 via 2 paths





Find, fix and prevent vulnerabilities in your code.

  • 1
  • 1
  • 2
  • 0
  • 0

medium severity

Prototype Pollution

  • Vulnerable module: minimist
  • Introduced through: optimist@0.6.1

Detailed paths

  • Introduced through: analyze-css@0.4.0 optimist@0.6.1 minimist@0.0.10


minimist is a parse argument options module.

Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a constructor or __proto__ payload.

PoC by Snyk

require('minimist')('--__proto__.injected0 value0'.split(' '));
console.log(({}).injected0 === 'value0'); // true

require('minimist')('--constructor.prototype.injected1 value1'.split(' '));
console.log(({}).injected1 === 'value1'); // true


Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge
  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])


      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server
  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).
  2. Require schema validation of JSON input.
  3. Avoid using unsafe recursive merge functions.
  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.
  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018


Upgrade minimist to version 0.2.1, 1.2.3 or higher.


low severity

Insecure use of /tmp folder

  • Vulnerable module: cli
  • Introduced through: cli@0.4.5

Detailed paths

  • Introduced through: analyze-css@0.4.0 cli@0.4.5
    Remediation: Upgrade to analyze-css@0.12.3.


cli is an npm package used for rapidly building command line apps.

When used in daemon mode, the library makes insecure use of two files in the /tmp/ folder: /tmp/<app-name>.pid and /tmp/<app-name>.log. These allow an attacker to overwrite files they typically cannot access, but that are accessible by the user running the CLI-using app. This is possible since the /tmp/ folder is (typically) writeable to all system users, and because the names of the files in question are easily predicted by an attacker.

Note that while this is a real vulnerability, it relies on functionality (daemon mode) which is only supported in very old Node versions (0.8 or older), and so is unlikely to be used by most cli users. To avoid any doubt, the fixed version (1.0.0) removes support for this feature entirely.


For example, assume user victim occasionally runs a CLI tool called cli-tool, which uses the cli package. If an attacker gains write access to the /tmp/ folder of that machine (but not the higher permissions victim has), they can create the symbolic link /tmp/ -> /home/victim/important-file. When victim runs cli-tool, the important-file in victim's root directory will be nullified. If the CLI tool is run as root, the same can be done to nullify /etc/passwd and make the system unbootable.

Note that popular CLI tools have no reason to mask their names, and so attackers can easily guess a long list of tools victims may run by checking the cli package dependents.


Upgrade cli to version 1.0.0 or greater, which disables the affected feature.

From the fix release notes:

This feature relies on a beta release (e.g. version 0.5.1) of a Node.js
module on npm--one that was superseded by a stable (e.g. version 1.0)
release published three years ago [2]. Due to a build-time dependency on
the long-since deprecated `node-waf` tool, the module at that version
can only be built for Node.js versions 0.8 and below.

Given this, actual usage of this feature is likely very limited. Remove
it completely so the integrity of this module's core functionality can
be verified.


[1] [2]