Vulnerabilities

6 via 6 paths

Dependencies

30

Source

GitHub

Commit

4feb984f

Find, fix and prevent vulnerabilities in your code.

Severity
  • 5
  • 1
Status
  • 6
  • 0
  • 0

medium severity

Improper Control of Generation of Code ('Code Injection')

  • Vulnerable module: ansible-core
  • Introduced through: ansible@4.8.0

Detailed paths

  • Introduced through: shinesolutions/packer-aem@shinesolutions/packer-aem#4feb984fcb8dbba226b434a703d7874bcea6f37f ansible@4.8.0 ansible-core@2.11.12
    Remediation: Upgrade to ansible@4.8.0.

Overview

ansible-core is an a radically simple IT automation system. It handles configuration management, application deployment, cloud provisioning, ad-hoc task execution, network automation, and multi-node orchestration. Ansible makes complex changes like zero-downtime rolling updates with load balancers easy.

Affected versions of this package are vulnerable to Improper Control of Generation of Code ('Code Injection'). An attacker can inject malicious code into the template, leading to unauthorized access and potential data compromise.

Remediation

Upgrade ansible-core to version 2.15.7rc1, 2.16.1rc1 or higher.

References

medium severity

Symlink Attack

  • Vulnerable module: ansible-core
  • Introduced through: ansible@4.8.0

Detailed paths

  • Introduced through: shinesolutions/packer-aem@shinesolutions/packer-aem#4feb984fcb8dbba226b434a703d7874bcea6f37f ansible@4.8.0 ansible-core@2.11.12
    Remediation: Upgrade to ansible@4.8.0.

Overview

ansible-core is an a radically simple IT automation system. It handles configuration management, application deployment, cloud provisioning, ad-hoc task execution, network automation, and multi-node orchestration. Ansible makes complex changes like zero-downtime rolling updates with load balancers easy.

Affected versions of this package are vulnerable to Symlink Attack via the ansible-galaxy function. When installing a maliciously created Ansible role using ansible-galaxy role install, arbitrary files the user has access to can be overwritten. The malicious role must contain a symlink with an absolute path to the target file, followed by a file of the same name (as the symlink) with the contents to write to the target.

Remediation

Upgrade ansible-core to version 2.13.13rc1, 2.14.11rc1, 2.15.5rc1, 2.16.0b2 or higher.

References

medium severity

Improper Output Neutralization for Logs

  • Vulnerable module: ansible-core
  • Introduced through: ansible@4.8.0

Detailed paths

  • Introduced through: shinesolutions/packer-aem@shinesolutions/packer-aem#4feb984fcb8dbba226b434a703d7874bcea6f37f ansible@4.8.0 ansible-core@2.11.12
    Remediation: Upgrade to ansible@4.8.0.

Overview

ansible-core is an a radically simple IT automation system. It handles configuration management, application deployment, cloud provisioning, ad-hoc task execution, network automation, and multi-node orchestration. Ansible makes complex changes like zero-downtime rolling updates with load balancers easy.

Affected versions of this package are vulnerable to Improper Output Neutralization for Logs due to a failure to respect the ANSIBLE_NO_LOG configuration in some scenarios. This could allow an attacker to obtain sensitive information, such as decrypted secret values from the output of certain tasks, like loop items.

Remediation

Upgrade ansible-core to version 2.14.14, 2.15.9, 2.16.3 or higher.

References

medium severity

Race Condition

  • Vulnerable module: ansible-core
  • Introduced through: ansible@4.8.0

Detailed paths

  • Introduced through: shinesolutions/packer-aem@shinesolutions/packer-aem#4feb984fcb8dbba226b434a703d7874bcea6f37f ansible@4.8.0 ansible-core@2.11.12
    Remediation: Upgrade to ansible@4.8.0.

Overview

ansible-core is an a radically simple IT automation system. It handles configuration management, application deployment, cloud provisioning, ad-hoc task execution, network automation, and multi-node orchestration. Ansible makes complex changes like zero-downtime rolling updates with load balancers easy.

Affected versions of this package are vulnerable to Race Condition. The ANSIBLE_ASYNC_DIR value defaults to ~/.ansible_async/ but is settable by the user.

When this occurs, there is a race condition on the managed machine. A malicious, low privileged account on the remote machine can pre-create /tmp/username-ansible-async and then use various attacks to access the async result data.

Remediation

Upgrade ansible-core to version 2.12.0b1 or higher.

References

medium severity

Credential Exposure

  • Vulnerable module: ansible
  • Introduced through: ansible@4.8.0

Detailed paths

  • Introduced through: shinesolutions/packer-aem@shinesolutions/packer-aem#4feb984fcb8dbba226b434a703d7874bcea6f37f ansible@4.8.0
    Remediation: Upgrade to ansible@7.0.0.

Overview

ansible is a simple IT automation system.

Affected versions of this package are vulnerable to Credential Exposure in amazon.aws.ec2_instance, which leaks passwords into logs when tower_callback.windows is set. This was resolved in version 5.1.0 of the amazon.aws.ec2_instance module. Note: You're only vulnerable if you're using the amazon.aws collection

Remediation

Upgrade ansible to version 7.0.0 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: awscli
  • Introduced through: awscli@1.22.1

Detailed paths

  • Introduced through: shinesolutions/packer-aem@shinesolutions/packer-aem#4feb984fcb8dbba226b434a703d7874bcea6f37f awscli@1.22.1
    Remediation: Upgrade to awscli@1.27.90.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when an attacker can craft a malicious nuget.config file. This vulnerability can be exploited when a user performs Nuget or Dotnet login

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade awscli to version 1.27.90 or higher.

References