Vulnerabilities

58 via 368 paths

Dependencies

875

Source

GitHub

Commit

1f882b1a

Find, fix and prevent vulnerabilities in your code.

Severity
  • 1
  • 19
  • 34
  • 4
Status
  • 58
  • 0
  • 0

critical severity

Incomplete List of Disallowed Inputs

  • Vulnerable module: babel-traverse
  • Introduced through: radium@0.18.4

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-plugin-transform-decorators-legacy@1.3.5 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-computed-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-systemjs@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-plugin-transform-class-constructor-call@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-helper-call-delegate@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-helper-explode-class@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-helper-explode-class@6.24.1 babel-helper-bindify-decorators@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-exponentiation-operator@6.24.1 babel-helper-builder-binary-assignment-operator-visitor@6.24.1 babel-helper-explode-assignable-expression@6.24.1 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0

Overview

Affected versions of this package are vulnerable to Incomplete List of Disallowed Inputs when using plugins that rely on the path.evaluate() or path.evaluateTruthy() internal Babel methods.

Note:

This is only exploitable if the attacker uses known affected plugins such as @babel/plugin-transform-runtime, @babel/preset-env when using its useBuiltIns option, and any "polyfill provider" plugin that depends on @babel/helper-define-polyfill-provider. No other plugins under the @babel/ namespace are impacted, but third-party plugins might be.

Users that only compile trusted code are not impacted.

Workaround

Users who are unable to upgrade the library can upgrade the affected plugins instead, to avoid triggering the vulnerable code path in affected @babel/traverse.

Remediation

There is no fixed version for babel-traverse.

References

high severity

Command Injection

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@2.7.2

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe nodemailer@2.7.2
    Remediation: Upgrade to nodemailer@6.4.16.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Command Injection. Use of crafted recipient email addresses may result in arbitrary command flag injection in sendmail transport for sending mails.

PoC

-bi@example.com (-bi Initialize the alias database.)
-d0.1a@example.com (The option -d0.1 prints the version of sendmail and the options it was compiled with.)
-Dfilename@example.com (Debug output ffile)

Remediation

Upgrade nodemailer to version 6.4.16 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
    Remediation: Upgrade to bcrypt@2.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic was insufficient when extracting tar files that contained both a directory and a symlink with the same name as the directory, where the symlink and directory names in the archive entry used backslashes as a path separator on posix systems. The cache checking logic used both \ and / characters as path separators. However, \ is a valid filename character on posix systems.

By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location. This can lead to extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite.

Additionally, a similar confusion could arise on case-insensitive filesystems. If a tar archive contained a directory at FOO, followed by a symbolic link named foo, then on case-insensitive file systems, the creation of the symbolic link would remove the directory from the filesystem, but not from the internal directory cache, as it would not be treated as a cache hit. A subsequent file entry within the FOO directory would then be placed in the target of the symbolic link, thinking that the directory had already been created.

Remediation

Upgrade tar to version 6.1.7, 5.0.8, 4.4.16 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
    Remediation: Upgrade to bcrypt@2.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic is insufficient when extracting tar files that contain two directories and a symlink with names containing unicode values that normalized to the same value. Additionally, on Windows systems, long path portions would resolve to the same file system entities as their 8.3 "short path" counterparts. A specially crafted tar archive can include directories with two forms of the path that resolve to the same file system entity, followed by a symbolic link with a name in the first form, lastly followed by a file using the second form. This leads to bypassing node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and extracting arbitrary files into that location.

Remediation

Upgrade tar to version 6.1.9, 5.0.10, 4.4.18 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
    Remediation: Upgrade to bcrypt@2.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be outside of the extraction target directory is not extracted. This is, in part, accomplished by sanitizing absolute paths of entries within the archive, skipping archive entries that contain .. path portions, and resolving the sanitized paths against the extraction target directory.

This logic is insufficient on Windows systems when extracting tar files that contain a path that is not an absolute path, but specify a drive letter different from the extraction target, such as C:some\path. If the drive letter does not match the extraction target, for example D:\extraction\dir, then the result of path.resolve(extractionDirectory, entryPath) resolves against the current working directory on the C: drive, rather than the extraction target directory.

Additionally, a .. portion of the path can occur immediately after the drive letter, such as C:../foo, and is not properly sanitized by the logic that checks for .. within the normalized and split portions of the path.

Note: This only affects users of node-tar on Windows systems.

Remediation

Upgrade tar to version 6.1.9, 5.0.10, 4.4.18 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
    Remediation: Upgrade to bcrypt@2.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient symlink protection. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic is insufficient when extracting tar files that contain both a directory and a symlink with the same name as the directory. This order of operations results in the directory being created and added to the node-tar directory cache. When a directory is present in the directory cache, subsequent calls to mkdir for that directory are skipped. However, this is also where node-tar checks for symlinks occur. By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location.

Remediation

Upgrade tar to version 3.2.3, 4.4.15, 5.0.7, 6.1.2 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
    Remediation: Upgrade to bcrypt@2.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient absolute path sanitization.

node-tar aims to prevent extraction of absolute file paths by turning absolute paths into relative paths when the preservePaths flag is not set to true. This is achieved by stripping the absolute path root from any absolute file paths contained in a tar file. For example, the path /home/user/.bashrc would turn into home/user/.bashrc.

This logic is insufficient when file paths contain repeated path roots such as ////home/user/.bashrc. node-tar only strips a single path root from such paths. When given an absolute file path with repeating path roots, the resulting path (e.g. ///home/user/.bashrc) still resolves to an absolute path.

Remediation

Upgrade tar to version 3.2.2, 4.4.14, 5.0.6, 6.1.1 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: ajv
  • Introduced through: prerender-node@2.8.0 and npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe prerender-node@2.8.0 request@2.81.0 har-validator@4.2.1 ajv@4.11.8
    Remediation: Upgrade to prerender-node@3.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 request@2.81.0 har-validator@4.2.1 ajv@4.11.8

Overview

ajv is an Another JSON Schema Validator

Affected versions of this package are vulnerable to Prototype Pollution. A carefully crafted JSON schema could be provided that allows execution of other code by prototype pollution. (While untrusted schemas are recommended against, the worst case of an untrusted schema should be a denial of service, not execution of code.)

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade ajv to version 6.12.3 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: npm
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12

Overview

npm is a package manager for JavaScript.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. It fails to prevent existing globally-installed binaries to be overwritten by other package installations. For example, if a package was installed globally and created a serve binary, any subsequent installs of packages that also create a serve binary would overwrite the first binary. This only affects files in /usr/local/bin.

For npm, this behaviour is still allowed in local installations and also through install scripts. This vulnerability bypasses a user using the --ignore-scripts install option.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade npm to version 6.13.4 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: npm
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12

Overview

npm is a package manager for JavaScript.

Affected versions of this package are vulnerable to Arbitrary File Write. It fails to prevent access to folders outside of the intended node_modules folder through the bin field.

For npm, a properly constructed entry in the package.json bin field would allow a package publisher to modify and/or gain access to arbitrary files on a user’s system when the package is installed. This behaviour is possible through install scripts. This vulnerability bypasses a user using the --ignore-scripts install option.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade npm to version 6.13.3 or higher.

References

high severity

Remote Memory Exposure

  • Vulnerable module: bl
  • Introduced through: twilio@2.11.1 and npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 request@2.74.0 bl@1.1.2
    Remediation: Upgrade to twilio@3.41.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 request@2.74.0 bl@1.1.2

Overview

bl is a library that allows you to collect buffers and access with a standard readable buffer interface.

Affected versions of this package are vulnerable to Remote Memory Exposure. If user input ends up in consume() argument and can become negative, BufferList state can be corrupted, tricking it into exposing uninitialized memory via regular .slice() calls.

PoC by chalker

const { BufferList } = require('bl')
const secret = require('crypto').randomBytes(256)
for (let i = 0; i < 1e6; i++) {
  const clone = Buffer.from(secret)
  const bl = new BufferList()
  bl.append(Buffer.from('a'))
  bl.consume(-1024)
  const buf = bl.slice(1)
  if (buf.indexOf(clone) !== -1) {
    console.error(`Match (at ${i})`, buf)
  }
}

Remediation

Upgrade bl to version 2.2.1, 3.0.1, 4.0.3, 1.2.3 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ansi-regex
  • Introduced through: postcss@5.2.18, npm-shrinkwrap@6.1.0 and others

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe postcss@5.2.18 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
    Remediation: Upgrade to postcss@7.0.37.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe postcss@5.2.18 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to postcss@7.0.37.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe autoprefixer@6.7.7 postcss@5.2.18 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
    Remediation: Upgrade to autoprefixer@9.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe css-annotation@0.6.2 postcss@5.2.18 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe postcss-js@0.3.0 postcss@5.2.18 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
    Remediation: Upgrade to postcss-js@2.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe autoprefixer@6.7.7 postcss@5.2.18 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to autoprefixer@9.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe css-annotation@0.6.2 postcss@5.2.18 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe postcss-js@0.3.0 postcss@5.2.18 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to postcss-js@2.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 columnify@1.5.4 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 request@2.74.0 har-validator@2.0.6 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 request@2.74.0 har-validator@2.0.6 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 npmlog@4.1.2 gauge@2.7.4 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe transliteration@1.6.6 yargs@12.0.5 cliui@4.1.0 wrap-ansi@2.1.0 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to transliteration@2.1.3.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 request@2.74.0 har-validator@2.0.6 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 request@2.74.0 har-validator@2.0.6 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 npmlog@4.1.2 gauge@2.7.4 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe transliteration@1.6.6 yargs@12.0.5 cliui@4.1.0 wrap-ansi@2.1.0 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to transliteration@2.1.3.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 npmlog@4.1.2 gauge@2.7.4 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 npm-registry-client@7.2.1 npmlog@3.1.2 gauge@2.6.0 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-plugin-transform-decorators-legacy@1.3.5 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-plugin-transform-decorators-legacy@1.3.5 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 npmlog@4.1.2 gauge@2.7.4 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 npm-registry-client@7.2.1 npmlog@3.1.2 gauge@2.6.0 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-computed-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-systemjs@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-plugin-transform-class-constructor-call@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-helper-call-delegate@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-computed-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-systemjs@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-plugin-transform-class-constructor-call@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-helper-call-delegate@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-helper-explode-class@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-helper-explode-class@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-helper-explode-class@6.24.1 babel-helper-bindify-decorators@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-helper-explode-class@6.24.1 babel-helper-bindify-decorators@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-exponentiation-operator@6.24.1 babel-helper-builder-binary-assignment-operator-visitor@6.24.1 babel-helper-explode-assignable-expression@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-exponentiation-operator@6.24.1 babel-helper-builder-binary-assignment-operator-visitor@6.24.1 babel-helper-explode-assignable-expression@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the sub-patterns [[\\]()#;?]* and (?:;[-a-zA-Z\\d\\/#&.:=?%@~_]*)*.

PoC

import ansiRegex from 'ansi-regex';

for(var i = 1; i <= 50000; i++) {
    var time = Date.now();
    var attack_str = "\u001B["+";".repeat(i*10000);
    ansiRegex().test(attack_str)
    var time_cost = Date.now() - time;
    console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ansi-regex to version 3.0.1, 4.1.1, 5.0.1, 6.0.1 or higher.

References

high severity

Insecure Encryption

  • Vulnerable module: bcrypt
  • Introduced through: bcrypt@1.0.3

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3
    Remediation: Upgrade to bcrypt@5.0.0.

Overview

bcrypt is an A library to help you hash passwords.

Affected versions of this package are vulnerable to Insecure Encryption. Data is truncated wrong when its length is greater than 255 bytes.

Remediation

Upgrade bcrypt to version 5.0.0 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: i18next
  • Introduced through: i18next@7.0.1

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe i18next@7.0.1
    Remediation: Upgrade to i18next@19.8.5.

Overview

i18next is an internationalization framework for browser or any other javascript environment (eg. node.js).

Affected versions of this package are vulnerable to Prototype Pollution via getLastOfPath() in i18next.js.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade i18next to version 19.8.5 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: npm-user-validate
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 npm-user-validate@0.1.5

Overview

npm-user-validate is an User validations for npm

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The regex that validates user emails took exponentially longer to process long input strings beginning with @ characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade npm-user-validate to version 1.0.1 or higher.

References

high severity

Prototype Poisoning

  • Vulnerable module: qs
  • Introduced through: stripe@4.25.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe stripe@4.25.0 qs@6.0.4
    Remediation: Upgrade to stripe@5.1.0.

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Prototype Poisoning which allows attackers to cause a Node process to hang, processing an Array object whose prototype has been replaced by one with an excessive length value.

Note: In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade qs to version 6.2.4, 6.3.3, 6.4.1, 6.5.3, 6.6.1, 6.7.3, 6.8.3, 6.9.7, 6.10.3 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: semver
  • Introduced through: braintree@2.24.0 and npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe braintree@2.24.0 semver@5.1.0
    Remediation: Upgrade to braintree@3.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 semver@5.3.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 semver@5.1.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 semver@4.3.6

Overview

semver is a semantic version parser used by npm.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.

PoC


const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]

console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})

const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade semver to version 5.7.2, 6.3.1, 7.5.2 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: swiper
  • Introduced through: swiper@3.4.2

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe swiper@3.4.2
    Remediation: Upgrade to swiper@6.5.1.

Overview

swiper is a Most modern mobile touch slider and framework with hardware accelerated transitions

Affected versions of this package are vulnerable to Prototype Pollution.

PoC

var swiper = require('swiper');

var malicious_payload = '{"__proto__":{"polluted":"HACKED"}}';
console.log("Before: " + {}.polluted); // undefined
swiper.default.extendDefaults(JSON.parse(malicious_payload));
console.log("After: " + {}.polluted); // HACKED

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade swiper to version 6.5.1 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: unset-value
  • Introduced through: radium@0.18.4

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 chokidar@1.7.0 readdirp@2.2.1 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 chokidar@1.7.0 readdirp@2.2.1 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 chokidar@1.7.0 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 chokidar@1.7.0 readdirp@2.2.1 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 chokidar@1.7.0 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0

Overview

Affected versions of this package are vulnerable to Prototype Pollution via the unset function in index.js, because it allows access to object prototype properties.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade unset-value to version 2.0.1 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: hawk
  • Introduced through: prerender-node@2.8.0, twilio@2.11.1 and others

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe prerender-node@2.8.0 request@2.81.0 hawk@3.1.3
    Remediation: Upgrade to prerender-node@3.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 request@2.74.0 hawk@3.1.3
    Remediation: Upgrade to twilio@3.17.1.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 request@2.74.0 hawk@3.1.3
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 request@2.81.0 hawk@3.1.3

Overview

hawk is a library for the HTTP Hawk Authentication Scheme.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in header parsing where each added character in the attacker's input increases the computation time exponentially.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade hawk to version 9.0.1 or higher.

References

medium severity

Use of a Broken or Risky Cryptographic Algorithm

  • Vulnerable module: jsonwebtoken
  • Introduced through: nexmo@1.2.1 and twilio@2.11.1

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe nexmo@1.2.1 jsonwebtoken@7.4.3
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 jsonwebtoken@5.4.1
    Remediation: Upgrade to twilio@4.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Use of a Broken or Risky Cryptographic Algorithm such that the library can be misconfigured to use legacy, insecure key types for signature verification. For example, DSA keys could be used with the RS256 algorithm.

Exploitability

Users are affected when using an algorithm and a key type other than the combinations mentioned below:

EC: ES256, ES384, ES512

RSA: RS256, RS384, RS512, PS256, PS384, PS512

RSA-PSS: PS256, PS384, PS512

And for Elliptic Curve algorithms:

ES256: prime256v1

ES384: secp384r1

ES512: secp521r1

Workaround

Users who are unable to upgrade to the fixed version can use the allowInvalidAsymmetricKeyTypes option to true in the sign() and verify() functions to continue usage of invalid key type/algorithm combination in 9.0.0 for legacy compatibility.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Improper Restriction of Security Token Assignment

  • Vulnerable module: jsonwebtoken
  • Introduced through: nexmo@1.2.1 and twilio@2.11.1

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe nexmo@1.2.1 jsonwebtoken@7.4.3
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 jsonwebtoken@5.4.1
    Remediation: Upgrade to twilio@4.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Improper Restriction of Security Token Assignment via the secretOrPublicKey argument due to misconfigurations of the key retrieval function jwt.verify(). Exploiting this vulnerability might result in incorrect verification of forged tokens when tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm.

Note: This vulnerability affects your application if it supports the usage of both symmetric and asymmetric keys in jwt.verify() implementation with the same key retrieval function.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: node-fetch
  • Introduced through: react@15.7.0, react-addons-create-fragment@15.6.2 and others

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe react@15.7.0 fbjs@0.8.18 isomorphic-fetch@2.2.1 node-fetch@1.7.3
    Remediation: Upgrade to react@16.5.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe react-addons-create-fragment@15.6.2 fbjs@0.8.18 isomorphic-fetch@2.2.1 node-fetch@1.7.3
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe react-dom@15.7.0 fbjs@0.8.18 isomorphic-fetch@2.2.1 node-fetch@1.7.3
    Remediation: Upgrade to react-dom@16.5.0.

Overview

node-fetch is a light-weight module that brings window.fetch to node.js

Affected versions of this package are vulnerable to Information Exposure when fetching a remote url with Cookie, if it get a Location response header, it will follow that url and try to fetch that url with provided cookie. This can lead to forwarding secure headers to 3th party.

Remediation

Upgrade node-fetch to version 2.6.7, 3.1.1 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: request
  • Introduced through: @reactioncommerce/authorize-net@1.0.8, node-geocoder@3.29.0 and others

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe @reactioncommerce/authorize-net@1.0.8 request@2.88.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe node-geocoder@3.29.0 request@2.88.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 request@2.88.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bunyan-loggly@1.4.2 node-loggly-bulk@2.2.5 request@2.88.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 npm-registry-client@7.2.1 request@2.88.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe prerender-node@2.8.0 request@2.81.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 request@2.81.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 request@2.74.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 request@2.74.0

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).

NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.

Remediation

A fix was pushed into the master branch but not yet published.

References

medium severity
new

Uncontrolled Resource Consumption ('Resource Exhaustion')

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Uncontrolled Resource Consumption ('Resource Exhaustion') due to the lack of folders count validation during the folder creation process. An attacker who generates a large number of sub-folders can consume memory on the system running the software and even crash the client within few seconds of running it using a path with too many sub-folders inside.

Remediation

Upgrade tar to version 6.2.1 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: tough-cookie
  • Introduced through: @reactioncommerce/authorize-net@1.0.8, node-geocoder@3.29.0 and others

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe @reactioncommerce/authorize-net@1.0.8 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe node-geocoder@3.29.0 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe node-geocoder@3.29.0 request-promise@4.2.6 tough-cookie@2.5.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bunyan-loggly@1.4.2 node-loggly-bulk@2.2.5 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 npm-registry-client@7.2.1 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe prerender-node@2.8.0 request@2.81.0 tough-cookie@2.3.4
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 request@2.74.0 tough-cookie@2.3.4
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 request@2.74.0 tough-cookie@2.3.4
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 request@2.81.0 tough-cookie@2.3.4

Overview

tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.

Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.

PoC

// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
  "Slonser=polluted; Domain=__proto__; Path=/notauth",
  "https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
  "Auth=Lol; Domain=google.com; Path=/notauth",
  "https://google.com/"
);

//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade tough-cookie to version 4.1.3 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: json5
  • Introduced through: radium@0.18.4

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 json5@0.5.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-core@6.26.3 json5@0.5.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-core@6.26.3 babel-register@6.26.0 babel-core@6.26.3 json5@0.5.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 json5@0.5.1

Overview

Affected versions of this package are vulnerable to Prototype Pollution via the parse method , which does not restrict parsing of keys named __proto__, allowing specially crafted strings to pollute the prototype of the resulting object. This pollutes the prototype of the object returned by JSON5.parse and not the global Object prototype (which is the commonly understood definition of Prototype Pollution). Therefore, the actual impact will depend on how applications utilize the returned object and how they filter unwanted keys.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade json5 to version 1.0.2, 2.2.2 or higher.

References

medium severity

Improper Authentication

  • Vulnerable module: jsonwebtoken
  • Introduced through: nexmo@1.2.1 and twilio@2.11.1

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe nexmo@1.2.1 jsonwebtoken@7.4.3
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 jsonwebtoken@5.4.1
    Remediation: Upgrade to twilio@4.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Improper Authentication such that the lack of algorithm definition in the jwt.verify() function can lead to signature validation bypass due to defaulting to the none algorithm for signature verification.

Exploitability

Users are affected only if all of the following conditions are true for the jwt.verify() function:

  1. A token with no signature is received.

  2. No algorithms are specified.

  3. A falsy (e.g., null, false, undefined) secret or key is passed.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: hoek
  • Introduced through: nexmo@1.2.1, prerender-node@2.8.0 and others

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe nexmo@1.2.1 jsonwebtoken@7.4.3 joi@6.10.1 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe prerender-node@2.8.0 request@2.81.0 hawk@3.1.3 hoek@2.16.3
    Remediation: Upgrade to prerender-node@3.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 request@2.74.0 hawk@3.1.3 hoek@2.16.3
    Remediation: Upgrade to twilio@3.9.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe nexmo@1.2.1 jsonwebtoken@7.4.3 joi@6.10.1 topo@1.1.0 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe prerender-node@2.8.0 request@2.81.0 hawk@3.1.3 boom@2.10.1 hoek@2.16.3
    Remediation: Upgrade to prerender-node@3.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 request@2.74.0 hawk@3.1.3 boom@2.10.1 hoek@2.16.3
    Remediation: Upgrade to twilio@3.9.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe prerender-node@2.8.0 request@2.81.0 hawk@3.1.3 sntp@1.0.9 hoek@2.16.3
    Remediation: Upgrade to prerender-node@3.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 request@2.74.0 hawk@3.1.3 sntp@1.0.9 hoek@2.16.3
    Remediation: Upgrade to twilio@3.9.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 request@2.74.0 hawk@3.1.3 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe prerender-node@2.8.0 request@2.81.0 hawk@3.1.3 cryptiles@2.0.5 boom@2.10.1 hoek@2.16.3
    Remediation: Upgrade to prerender-node@3.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 request@2.74.0 hawk@3.1.3 cryptiles@2.0.5 boom@2.10.1 hoek@2.16.3
    Remediation: Upgrade to twilio@3.9.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 request@2.74.0 hawk@3.1.3 boom@2.10.1 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 request@2.74.0 hawk@3.1.3 sntp@1.0.9 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 request@2.81.0 hawk@3.1.3 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 request@2.74.0 hawk@3.1.3 cryptiles@2.0.5 boom@2.10.1 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 request@2.81.0 hawk@3.1.3 boom@2.10.1 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 request@2.81.0 hawk@3.1.3 sntp@1.0.9 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 request@2.81.0 hawk@3.1.3 cryptiles@2.0.5 boom@2.10.1 hoek@2.16.3
    Remediation: Open PR to patch hoek@2.16.3.

Overview

hoek is an Utility methods for the hapi ecosystem.

Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.

PoC by Olivier Arteau (HoLyVieR)

var Hoek = require('hoek');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';

var a = {};
console.log("Before : " + a.oops);
Hoek.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade hoek to version 4.2.1, 5.0.3 or higher.

References

medium severity

HTTP Header Injection

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@2.7.2

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe nodemailer@2.7.2
    Remediation: Upgrade to nodemailer@6.6.1.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to HTTP Header Injection if unsanitized user input that may contain newlines and carriage returns is passed into an address object.

PoC:

const userEmail = 'foo@bar.comrnSubject: foobar'; // imagine this comes from e.g. HTTP request params or is otherwise user-controllable
await transporter.sendMail({
from: '...',
to: '...',
replyTo: {
name: 'Customer',
address: userEmail,
},
subject: 'My Subject',
text: message,
});

Remediation

Upgrade nodemailer to version 6.6.1 or higher.

References

medium severity

Missing Release of Resource after Effective Lifetime

  • Vulnerable module: inflight
  • Introduced through: npm-shrinkwrap@6.1.0, radium@0.18.4 and others

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 glob@7.0.6 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 init-package-json@1.9.6 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 read-package-json@2.0.13 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 rimraf@2.5.4 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bunyan@1.8.15 mv@2.1.1 rimraf@2.4.5 glob@6.0.4 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 fs-vacuum@1.2.10 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 init-package-json@1.9.6 read-package-json@2.1.2 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 read-installed@4.0.3 read-package-json@2.1.2 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 tar@2.2.2 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 tar@2.2.2 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 fstream-ignore@1.0.5 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 fstream-npm@1.1.1 fstream-ignore@1.0.5 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6

Overview

Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.

Exploiting this vulnerability results in crashing the node process or in the application crash.

Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.

To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.

PoC

const inflight = require('inflight');

function testInflight() {
  let i = 0;
  function scheduleNext() {
    let key = `key-${i++}`;
    const callback = () => {
    };
    for (let j = 0; j < 1000000; j++) {
      inflight(key, callback);
    }

    setImmediate(scheduleNext);
  }


  if (i % 100 === 0) {
    console.log(process.memoryUsage());
  }

  scheduleNext();
}

testInflight();

Remediation

There is no fixed version for inflight.

References

medium severity

Cryptographic Issues

  • Vulnerable module: bcrypt
  • Introduced through: bcrypt@1.0.3

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3
    Remediation: Upgrade to bcrypt@5.0.0.

Overview

bcrypt is an A library to help you hash passwords.

Affected versions of this package are vulnerable to Cryptographic Issues. When hashing a password containing an ASCII NUL character, that character acts as the string terminator. Any following characters are ignored.

Remediation

Upgrade bcrypt to version 5.0.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 msee@0.1.2 marked@0.3.19

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The em regex within src/rules.js file have multiple unused capture groups which could lead to a denial of service attack if user input is reachable.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 1.1.1 or higher.

References

medium severity

Denial of Service

  • Vulnerable module: node-fetch
  • Introduced through: react@15.7.0, react-addons-create-fragment@15.6.2 and others

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe react@15.7.0 fbjs@0.8.18 isomorphic-fetch@2.2.1 node-fetch@1.7.3
    Remediation: Upgrade to react@16.5.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe react-addons-create-fragment@15.6.2 fbjs@0.8.18 isomorphic-fetch@2.2.1 node-fetch@1.7.3
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe react-dom@15.7.0 fbjs@0.8.18 isomorphic-fetch@2.2.1 node-fetch@1.7.3
    Remediation: Upgrade to react-dom@16.5.0.

Overview

node-fetch is a light-weight module that brings window.fetch to node.js

Affected versions of this package are vulnerable to Denial of Service. Node Fetch did not honor the size option after following a redirect, which means that when a content size was over the limit, a FetchError would never get thrown and the process would end without failure.

Remediation

Upgrade node-fetch to version 2.6.1, 3.0.0-beta.9 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: yargs-parser
  • Introduced through: transliteration@1.6.6

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe transliteration@1.6.6 yargs@12.0.5 yargs-parser@11.1.1
    Remediation: Upgrade to transliteration@2.1.3.

Overview

yargs-parser is a mighty option parser used by yargs.

Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a __proto__ payload.

Our research team checked several attack vectors to verify this vulnerability:

  1. It could be used for privilege escalation.
  2. The library could be used to parse user input received from different sources:
    • terminal emulators
    • system calls from other code bases
    • CLI RPC servers

PoC by Snyk

const parser = require("yargs-parser");
console.log(parser('--foo.__proto__.bar baz'));
console.log(({}).bar);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade yargs-parser to version 5.0.1, 13.1.2, 15.0.1, 18.1.1 or higher.

References

medium severity

Arbitrary Code Injection

  • Vulnerable module: underscore
  • Introduced through: nodemailer@2.7.2

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe nodemailer@2.7.2 nodemailer-direct-transport@3.3.2 smtp-connection@2.12.0 httpntlm@1.6.1 underscore@1.7.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe nodemailer@2.7.2 nodemailer-smtp-pool@2.8.2 smtp-connection@2.12.0 httpntlm@1.6.1 underscore@1.7.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe nodemailer@2.7.2 nodemailer-smtp-transport@2.7.2 smtp-connection@2.12.0 httpntlm@1.6.1 underscore@1.7.0

Overview

underscore is a JavaScript's functional programming helper library.

Affected versions of this package are vulnerable to Arbitrary Code Injection via the template function, particularly when the variable option is taken from _.templateSettings as it is not sanitized.

PoC

const _ = require('underscore');
_.templateSettings.variable = "a = this.process.mainModule.require('child_process').execSync('touch HELLO')";
const t = _.template("")();

Remediation

Upgrade underscore to version 1.13.0-2, 1.12.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: browserslist
  • Introduced through: autoprefixer@6.7.7

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe autoprefixer@6.7.7 browserslist@1.7.7
    Remediation: Upgrade to autoprefixer@9.0.0.

Overview

browserslist is a Share target browsers between different front-end tools, like Autoprefixer, Stylelint and babel-env-preset

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) during parsing of queries.

PoC by Yeting Li

var browserslist = require("browserslist")
function build_attack(n) {
    var ret = "> "
    for (var i = 0; i < n; i++) {
        ret += "1"
    }
    return ret + "!";
}

// browserslist('> 1%')

//browserslist(build_attack(500000))
for(var i = 1; i <= 500000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        try{
            browserslist(attack_str);
            var time_cost = Date.now() - time;
            console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
            }
        catch(e){
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
        }
    }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade browserslist to version 4.16.5 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: d3-color
  • Introduced through: react-taco-table@0.5.1

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe react-taco-table@0.5.1 d3-scale@1.0.7 d3-color@1.4.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe react-taco-table@0.5.1 d3-scale-chromatic@1.5.0 d3-color@1.4.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe react-taco-table@0.5.1 d3-scale@1.0.7 d3-interpolate@1.4.0 d3-color@1.4.1
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe react-taco-table@0.5.1 d3-scale-chromatic@1.5.0 d3-interpolate@1.4.0 d3-color@1.4.1

Overview

d3-color is a Color spaces! RGB, HSL, Cubehelix, Lab and HCL (Lch).

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the rgb() and hrc() functions.

PoC by Yeting Li:

var d3Color = require("d3-color")
// d3Color.rgb("rgb(255,255,255)")

function build_blank(n) {
    var ret = "rgb("
    for (var i = 0; i < n; i++) {
        ret += "1"
    }
    return ret + "!";
}

for(var i = 1; i <= 5000000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_blank(i)
        d3Color.rgb(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
    }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade d3-color to version 3.1.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: glob-parent
  • Introduced through: radium@0.18.4

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 chokidar@1.7.0 glob-parent@2.0.0
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 chokidar@1.7.0 anymatch@1.3.2 micromatch@2.3.11 parse-glob@3.0.4 glob-base@0.3.0 glob-parent@2.0.0

Overview

glob-parent is a package that helps extracting the non-magic parent path from a glob string.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The enclosure regex used to check for strings ending in enclosure containing path separator.

PoC by Yeting Li

var globParent = require("glob-parent")
function build_attack(n) {
var ret = "{"
for (var i = 0; i < n; i++) {
ret += "/"
}

return ret;
}

globParent(build_attack(5000));

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade glob-parent to version 5.1.2 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: hosted-git-info
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 hosted-git-info@2.1.5

Overview

hosted-git-info is a Provides metadata and conversions from repository urls for Github, Bitbucket and Gitlab

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via regular expression shortcutMatch in the fromUrl function in index.js. The affected regular expression exhibits polynomial worst-case time complexity.

PoC by Yeting Li

var hostedGitInfo = require("hosted-git-info")
function build_attack(n) {
    var ret = "a:"
    for (var i = 0; i < n; i++) {
        ret += "a"
    }
    return ret + "!";
}

for(var i = 1; i <= 5000000; i++) {
   if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       var parsedInfo = hostedGitInfo.fromUrl(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade hosted-git-info to version 3.0.8, 2.8.9 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 msee@0.1.2 marked@0.3.19

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The inline.text regex may take quadratic time to scan for potential email addresses starting at every point.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 0.6.2 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 msee@0.1.2 marked@0.3.19

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when passing unsanitized user input to inline.reflinkSearch, if it is not being parsed by a time-limited worker thread.

PoC

import * as marked from 'marked';

console.log(marked.parse(`[x]: x

\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](`));

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 4.0.10 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 msee@0.1.2 marked@0.3.19

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when unsanitized user input is passed to block.def.

PoC

import * as marked from "marked";
marked.parse(`[x]:${' '.repeat(1500)}x ${' '.repeat(1500)} x`);

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 4.0.10 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 msee@0.1.2 marked@0.3.19

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). A Denial of Service condition could be triggered through exploitation of the heading regex.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 0.4.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@2.7.2

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe nodemailer@2.7.2
    Remediation: Upgrade to nodemailer@6.9.9.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the attachDataUrls parameter or when parsing attachments with an embedded file. An attacker can exploit this vulnerability by sending a specially crafted email that triggers inefficient regular expression evaluation, leading to excessive consumption of CPU resources.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade nodemailer to version 6.9.9 or higher.

References

medium severity

Access Restriction Bypass

  • Vulnerable module: npm
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12

Overview

npm is a package manager for JavaScript.

Affected versions of this package are vulnerable to Access Restriction Bypass. It might allow local users to bypass intended filesystem access restrictions due to ownerships of /etc and /usr directories are being changed unexpectedly, related to a "correctMkdir" issue.

Remediation

Upgrade npm to version 5.7.1 or higher.

References

medium severity

Insertion of Sensitive Information into Log File

  • Vulnerable module: npm
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12

Overview

npm is a package manager for JavaScript.

Affected versions of this package are vulnerable to Insertion of Sensitive Information into Log File. The CLI supports URLs like <protocol>://[<user>[:<password>]@]<hostname>[:<port>][:][/]<path>. The password value is not redacted and is printed to stdout and also to any generated log files.

Remediation

Upgrade npm to version 6.14.6 or higher.

References

medium severity

Improper Input Validation

  • Vulnerable module: postcss
  • Introduced through: postcss@5.2.18, autoprefixer@6.7.7 and others

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe postcss@5.2.18
    Remediation: Upgrade to postcss@8.4.31.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe autoprefixer@6.7.7 postcss@5.2.18
    Remediation: Upgrade to autoprefixer@10.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe css-annotation@0.6.2 postcss@5.2.18
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe postcss-js@0.3.0 postcss@5.2.18
    Remediation: Upgrade to postcss-js@3.0.0.

Overview

postcss is a PostCSS is a tool for transforming styles with JS plugins.

Affected versions of this package are vulnerable to Improper Input Validation when parsing external Cascading Style Sheets (CSS) with linters using PostCSS. An attacker can cause discrepancies by injecting malicious CSS rules, such as @font-face{ font:(\r/*);}. This vulnerability is because of an insecure regular expression usage in the RE_BAD_BRACKET variable.

Remediation

Upgrade postcss to version 8.4.31 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: postcss
  • Introduced through: postcss@5.2.18, autoprefixer@6.7.7 and others

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe postcss@5.2.18
    Remediation: Upgrade to postcss@7.0.36.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe autoprefixer@6.7.7 postcss@5.2.18
    Remediation: Upgrade to autoprefixer@9.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe css-annotation@0.6.2 postcss@5.2.18
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe postcss-js@0.3.0 postcss@5.2.18
    Remediation: Upgrade to postcss-js@2.0.0.

Overview

postcss is a PostCSS is a tool for transforming styles with JS plugins.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via getAnnotationURL() and loadAnnotation() in lib/previous-map.js. The vulnerable regexes are caused mainly by the sub-pattern \/\*\s*# sourceMappingURL=(.*).

PoC

var postcss = require("postcss")
function build_attack(n) {
    var ret = "a{}"
    for (var i = 0; i < n; i++) {
        ret += "/*# sourceMappingURL="
    }
    return ret + "!";
}

// postcss.parse('a{}/*# sourceMappingURL=a.css.map */')
for(var i = 1; i <= 500000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        try{
            postcss.parse(attack_str)
            var time_cost = Date.now() - time;
            console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
            }
        catch(e){
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
        }
    }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade postcss to version 8.2.13, 7.0.36 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: xml2js
  • Introduced through: @reactioncommerce/authorize-net@1.0.8 and braintree@2.24.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe @reactioncommerce/authorize-net@1.0.8 xml2js@0.4.23
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe braintree@2.24.0 xml2js@0.1.13
    Remediation: Upgrade to braintree@3.15.0.

Overview

Affected versions of this package are vulnerable to Prototype Pollution due to allowing an external attacker to edit or add new properties to an object. This is possible because the application does not properly validate incoming JSON keys, thus allowing the __proto__ property to be edited.

PoC

var parseString = require('xml2js').parseString;

let normal_user_request    = "<role>admin</role>";
let malicious_user_request = "<__proto__><role>admin</role></__proto__>";

const update_user = (userProp) => {
    // A user cannot alter his role. This way we prevent privilege escalations.
    parseString(userProp, function (err, user) {
        if(user.hasOwnProperty("role") && user?.role.toLowerCase() === "admin") {
            console.log("Unauthorized Action");
        } else {
            console.log(user?.role[0]);
        }
    });
}

update_user(normal_user_request);
update_user(malicious_user_request);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade xml2js to version 0.5.0 or higher.

References

medium severity

Uninitialized Memory Exposure

  • Vulnerable module: tunnel-agent
  • Introduced through: twilio@2.11.1 and npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 request@2.74.0 tunnel-agent@0.4.3
    Remediation: Upgrade to twilio@3.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 request@2.74.0 tunnel-agent@0.4.3
    Remediation: Open PR to patch tunnel-agent@0.4.3.

Overview

tunnel-agent is HTTP proxy tunneling agent. Affected versions of the package are vulnerable to Uninitialized Memory Exposure.

A possible memory disclosure vulnerability exists when a value of type number is used to set the proxy.auth option of a request request and results in a possible uninitialized memory exposures in the request body.

This is a result of unobstructed use of the Buffer constructor, whose insecure default constructor increases the odds of memory leakage.

Details

Constructing a Buffer class with integer N creates a Buffer of length N with raw (not "zero-ed") memory.

In the following example, the first call would allocate 100 bytes of memory, while the second example will allocate the memory needed for the string "100":

// uninitialized Buffer of length 100
x = new Buffer(100);
// initialized Buffer with value of '100'
x = new Buffer('100');

tunnel-agent's request construction uses the default Buffer constructor as-is, making it easy to append uninitialized memory to an existing list. If the value of the buffer list is exposed to users, it may expose raw server side memory, potentially holding secrets, private data and code. This is a similar vulnerability to the infamous Heartbleed flaw in OpenSSL.

Proof of concept by ChALkeR

require('request')({
  method: 'GET',
  uri: 'http://www.example.com',
  tunnel: true,
  proxy:{
      protocol: 'http:',
      host:"127.0.0.1",
      port:8080,
      auth:80
  }
});

You can read more about the insecure Buffer behavior on our blog.

Similar vulnerabilities were discovered in request, mongoose, ws and sequelize.

Remediation

Upgrade tunnel-agent to version 0.6.0 or higher. Note This is vulnerable only for Node <=4

References

medium severity

Buffer Overflow

  • Vulnerable module: i18next
  • Introduced through: i18next@7.0.1

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe i18next@7.0.1
    Remediation: Upgrade to i18next@19.5.5.

Overview

i18next is an internationalization framework for browser or any other javascript environment (eg. node.js).

Affected versions of this package are vulnerable to Buffer Overflow. It is possible to cause buffer overflow by changing the translation to be recursive.

Remediation

Upgrade i18next to version 19.5.5 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: i18next
  • Introduced through: i18next@7.0.1

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe i18next@7.0.1
    Remediation: Upgrade to i18next@19.8.3.

Overview

i18next is an internationalization framework for browser or any other javascript environment (eg. node.js).

Affected versions of this package are vulnerable to Prototype Pollution. This vulnerability relates to the AddResourceBundle API which uses the the deepExtend function (https://github.com/i18next/i18next/blob/master/i18next.js#L361-L370) internally to extend existing translations in a file. Depending on if user input is provided, an attacker can overwrite and pollute the object prototype of a program.

PoC

import i18n from "i18next";
i18n.init({
    resources: {
      en: {
        namespace1: {
          key: 'hello from namespace 1'
        },
        namespace2: {
          key: 'hello from namespace 2'
        }
      },
      de: {
        namespace1: {
          key: 'hallo von namespace 1'
        },
        namespace2: {
          key: 'hallo von namespace 2'
        }  
      }
    }
  });

  var malicious_payload = '{"__proto__":{"vulnerable":"Polluted"}}';
  i18n.init({ resources: {} });
  i18n.addResourceBundle('en', 'namespace1', JSON.parse(malicious_payload)
  ,true,true);
 
 
console.log(i18n.options.resources);
//a newly created empty object has the vulnerable property
console.log({}.vulnerable);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade i18next to version 19.8.3 or higher.

References

medium severity

Time of Check Time of Use (TOCTOU)

  • Vulnerable module: chownr
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 chownr@1.0.1

Overview

chownr is a package that takes the same arguments as fs.chown()

Affected versions of this package are vulnerable to Time of Check Time of Use (TOCTOU). Affected versions of this package are vulnerable toTime of Check Time of Use (TOCTOU) attacks.

It does not dereference symbolic links and changes the owner of the link, which can trick it into descending into unintended trees if a non-symlink is replaced by a symlink at a critical moment:

      fs.lstat(pathChild, function(er, stats) {
        if (er)
          return cb(er)
        if (!stats.isSymbolicLink())
          chownr(pathChild, uid, gid, then)

Remediation

Upgrade chownr to version 1.1.0 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: braces
  • Introduced through: radium@0.18.4

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 chokidar@1.7.0 anymatch@1.3.2 micromatch@2.3.11 braces@1.8.5
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe radium@0.18.4 babel-cli@6.26.0 chokidar@1.7.0 anymatch@1.3.2 micromatch@2.3.11 braces@1.8.5

Overview

braces is a Bash-like brace expansion, implemented in JavaScript.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It used a regular expression (^\{(,+(?:(\{,+\})*),*|,*(?:(\{,+\})*),+)\}) in order to detects empty braces. This can cause an impact of about 10 seconds matching time for data 50K characters long.

Disclosure Timeline

  • Feb 15th, 2018 - Initial Disclosure to package owner
  • Feb 16th, 2018 - Initial Response from package owner
  • Feb 18th, 2018 - Fix issued
  • Feb 19th, 2018 - Vulnerability published

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade braces to version 2.3.1 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ms
  • Introduced through: twilio@2.11.1

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 jsonwebtoken@5.4.1 ms@0.7.3
    Remediation: Upgrade to twilio@3.5.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe twilio@2.11.1 jsonwebtoken@5.4.1 ms@0.7.3
    Remediation: Upgrade to twilio@3.5.0.

Overview

ms is a tiny millisecond conversion utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms() function.

Proof of concept

ms = require('ms');
ms('1'.repeat(9998) + 'Q') // Takes about ~0.3s

Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author. Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.

For more information on Regular Expression Denial of Service (ReDoS) attacks, go to our blog.

Disclosure Timeline

  • Feb 9th, 2017 - Reported the issue to package owner.
  • Feb 11th, 2017 - Issue acknowledged by package owner.
  • April 12th, 2017 - Fix PR opened by Snyk Security Team.
  • May 15th, 2017 - Vulnerability published.
  • May 16th, 2017 - Issue fixed and version 2.0.0 released.
  • May 21th, 2017 - Patches released for versions >=0.7.1, <=1.0.0.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ms to version 2.0.0 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
    Remediation: Upgrade to bcrypt@2.0.0.
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12 node-gyp@3.6.3 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). When stripping the trailing slash from files arguments, the f.replace(/\/+$/, '') performance of this function can exponentially degrade when f contains many / characters resulting in ReDoS.

This vulnerability is not likely to be exploitable as it requires that the untrusted input is being passed into the tar.extract() or tar.list() array of entries to parse/extract, which would be unusual.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade tar to version 6.1.4, 5.0.8, 4.4.16 or higher.

References

low severity

Unauthorized File Access

  • Vulnerable module: npm
  • Introduced through: npm-shrinkwrap@6.1.0

Detailed paths

  • Introduced through: reaction@reactioncommerce/reaction#1f882b1a286b28028e3da293601d6422447f9fbe npm-shrinkwrap@6.1.0 npm@2.15.12

Overview

npm is a package manager for JavaScript.

Affected versions of this package are vulnerable to Unauthorized File Access. It is possible for packages to create symlinks to files outside of thenode_modules folder through the bin field upon installation.

For npm, a properly constructed entry in the package.json bin field would allow a package publisher to create a symlink pointing to arbitrary files on a user’s system when the package is installed. This behaviour is possible through install scripts. This vulnerability bypasses a user using the --ignore-scripts install option.

Remediation

Upgrade npm to version 6.13.3 or higher.

References