Vulnerabilities

66 via 387 paths

Dependencies

1080

Source

GitHub

Commit

72d9fc35

Find, fix and prevent vulnerabilities in your code.

Severity
  • 1
  • 29
  • 33
  • 3
Status
  • 66
  • 0
  • 0

critical severity

Incomplete List of Disallowed Inputs

  • Vulnerable module: babel-traverse
  • Introduced through: babel-plugin-transform-class-properties@6.24.1, babel-cli@6.26.0 and others

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-plugin-transform-class-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-computed-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-computed-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-systemjs@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-systemjs@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-helper-call-delegate@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-helper-call-delegate@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-plugin-transform-class-constructor-call@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-exponentiation-operator@6.24.1 babel-helper-builder-binary-assignment-operator-visitor@6.24.1 babel-helper-explode-assignable-expression@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-helper-explode-class@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-helper-explode-class@6.24.1 babel-helper-bindify-decorators@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-exponentiation-operator@6.24.1 babel-helper-builder-binary-assignment-operator-visitor@6.24.1 babel-helper-explode-assignable-expression@6.24.1 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0

Overview

Affected versions of this package are vulnerable to Incomplete List of Disallowed Inputs when using plugins that rely on the path.evaluate() or path.evaluateTruthy() internal Babel methods.

Note:

This is only exploitable if the attacker uses known affected plugins such as @babel/plugin-transform-runtime, @babel/preset-env when using its useBuiltIns option, and any "polyfill provider" plugin that depends on @babel/helper-define-polyfill-provider. No other plugins under the @babel/ namespace are impacted, but third-party plugins might be.

Users that only compile trusted code are not impacted.

Workaround

Users who are unable to upgrade the library can upgrade the affected plugins instead, to avoid triggering the vulnerable code path in affected @babel/traverse.

Remediation

There is no fixed version for babel-traverse.

References

high severity

NULL Pointer Dereference

  • Vulnerable module: node-sass
  • Introduced through: node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to NULL Pointer Dereference in the function Sass::Functions::selector_append which could be leveraged by an attacker to cause a denial of service (application crash) or possibly have unspecified other impact. node-sass is affected by this vulnerability due to its bundled usage of libsass.

Remediation

There is no fixed version for node-sass.

References

high severity

Use After Free

  • Vulnerable module: node-sass
  • Introduced through: node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Use After Free via the SharedPtr class in SharedPtr.cpp (or SharedPtr.hpp) that may cause a denial of service (application crash) or possibly have unspecified other impact. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

high severity

Command Injection

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@4.7.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 nodemailer@4.7.0
    Remediation: Upgrade to nodemailer@6.4.16.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Command Injection. Use of crafted recipient email addresses may result in arbitrary command flag injection in sendmail transport for sending mails.

PoC

-bi@example.com (-bi Initialize the alias database.)
-d0.1a@example.com (The option -d0.1 prints the version of sendmail and the options it was compiled with.)
-Dfilename@example.com (Debug output ffile)

Remediation

Upgrade nodemailer to version 6.4.16 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
    Remediation: Upgrade to bcrypt@2.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass-middleware@1.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic was insufficient when extracting tar files that contained both a directory and a symlink with the same name as the directory, where the symlink and directory names in the archive entry used backslashes as a path separator on posix systems. The cache checking logic used both \ and / characters as path separators. However, \ is a valid filename character on posix systems.

By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location. This can lead to extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite.

Additionally, a similar confusion could arise on case-insensitive filesystems. If a tar archive contained a directory at FOO, followed by a symbolic link named foo, then on case-insensitive file systems, the creation of the symbolic link would remove the directory from the filesystem, but not from the internal directory cache, as it would not be treated as a cache hit. A subsequent file entry within the FOO directory would then be placed in the target of the symbolic link, thinking that the directory had already been created.

Remediation

Upgrade tar to version 6.1.7, 5.0.8, 4.4.16 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
    Remediation: Upgrade to bcrypt@2.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass-middleware@1.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic is insufficient when extracting tar files that contain two directories and a symlink with names containing unicode values that normalized to the same value. Additionally, on Windows systems, long path portions would resolve to the same file system entities as their 8.3 "short path" counterparts. A specially crafted tar archive can include directories with two forms of the path that resolve to the same file system entity, followed by a symbolic link with a name in the first form, lastly followed by a file using the second form. This leads to bypassing node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and extracting arbitrary files into that location.

Remediation

Upgrade tar to version 6.1.9, 5.0.10, 4.4.18 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
    Remediation: Upgrade to bcrypt@2.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass-middleware@1.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be outside of the extraction target directory is not extracted. This is, in part, accomplished by sanitizing absolute paths of entries within the archive, skipping archive entries that contain .. path portions, and resolving the sanitized paths against the extraction target directory.

This logic is insufficient on Windows systems when extracting tar files that contain a path that is not an absolute path, but specify a drive letter different from the extraction target, such as C:some\path. If the drive letter does not match the extraction target, for example D:\extraction\dir, then the result of path.resolve(extractionDirectory, entryPath) resolves against the current working directory on the C: drive, rather than the extraction target directory.

Additionally, a .. portion of the path can occur immediately after the drive letter, such as C:../foo, and is not properly sanitized by the logic that checks for .. within the normalized and split portions of the path.

Note: This only affects users of node-tar on Windows systems.

Remediation

Upgrade tar to version 6.1.9, 5.0.10, 4.4.18 or higher.

References

high severity

Uninitialized Memory Exposure

  • Vulnerable module: http-proxy-agent
  • Introduced through: mailgun-js@0.13.1

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mailgun-js@0.13.1 proxy-agent@2.1.0 http-proxy-agent@1.0.0
    Remediation: Upgrade to mailgun-js@0.17.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mailgun-js@0.13.1 proxy-agent@2.1.0 http-proxy-agent@1.0.0
    Remediation: Upgrade to mailgun-js@0.17.0.

Overview

http-proxy-agent provides an http.Agent implementation that connects to a specified HTTP or HTTPS proxy server, and can be used with the built-in http module.

Affected versions of this package are vulnerable to Uninitialized Memory Exposure and Denial of Service (DoS) attacks due to passing unsanitized options to Buffer(arg).

Uninitialized memory Exposre PoC by ChALKer

// listen with: nc -l -p 8080

var url = require('url');
var https = require('https');
var HttpsProxyAgent = require('https-proxy-agent');

var proxy = {
  protocol: 'http:',
  host: "127.0.0.1",
  port: 8080
};

proxy.auth = 500; // a number as 'auth'
var opts = url.parse('https://example.com/');
var agent = new HttpsProxyAgent(proxy);
opts.agent = agent;
https.get(opts);

Details

The Buffer class on Node.js is a mutable array of binary data, and can be initialized with a string, array or number.

const buf1 = new Buffer([1,2,3]);
// creates a buffer containing [01, 02, 03]
const buf2 = new Buffer('test');
// creates a buffer containing ASCII bytes [74, 65, 73, 74]
const buf3 = new Buffer(10);
// creates a buffer of length 10

The first two variants simply create a binary representation of the value it received. The last one, however, pre-allocates a buffer of the specified size, making it a useful buffer, especially when reading data from a stream. When using the number constructor of Buffer, it will allocate the memory, but will not fill it with zeros. Instead, the allocated buffer will hold whatever was in memory at the time. If the buffer is not zeroed by using buf.fill(0), it may leak sensitive information like keys, source code, and system info.

Remediation

Upgrade https-proxy-agent to version 2.1.0 or higher. Note This is vulnerable only for Node <=4

References

high severity

Uninitialized Memory Exposure

  • Vulnerable module: https-proxy-agent
  • Introduced through: mailgun-js@0.13.1

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mailgun-js@0.13.1 proxy-agent@2.1.0 https-proxy-agent@1.0.0
    Remediation: Upgrade to mailgun-js@0.17.0.

Overview

https-proxy-agent provides an http.Agent implementation that connects to a specified HTTP or HTTPS proxy server, and can be used with the built-in https module.

Affected versions of this package are vulnerable to Uninitialized Memory Exposure and Denial of Service (DoS) attacks due to passing unsanitized options to Buffer(arg).

Note: CVE-2018-3739 is a duplicate of CVE-2018-3736.

Uninitialized memory Exposre PoC by ChALKer

// listen with: nc -l -p 8080

var url = require('url');
var https = require('https');
var HttpsProxyAgent = require('https-proxy-agent');

var proxy = {
  protocol: 'http:',
  host: "127.0.0.1",
  port: 8080
};

proxy.auth = 500; // a number as 'auth'
var opts = url.parse('https://example.com/');
var agent = new HttpsProxyAgent(proxy);
opts.agent = agent;
https.get(opts);

Details

The Buffer class on Node.js is a mutable array of binary data, and can be initialized with a string, array or number.

const buf1 = new Buffer([1,2,3]);
// creates a buffer containing [01, 02, 03]
const buf2 = new Buffer('test');
// creates a buffer containing ASCII bytes [74, 65, 73, 74]
const buf3 = new Buffer(10);
// creates a buffer of length 10

The first two variants simply create a binary representation of the value it received. The last one, however, pre-allocates a buffer of the specified size, making it a useful buffer, especially when reading data from a stream. When using the number constructor of Buffer, it will allocate the memory, but will not fill it with zeros. Instead, the allocated buffer will hold whatever was in memory at the time. If the buffer is not zeroed by using buf.fill(0), it may leak sensitive information like keys, source code, and system info.

Remediation

Upgrade https-proxy-agent to version 2.2.0 or higher. Note This is vulnerable only for Node <=4

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
    Remediation: Upgrade to bcrypt@2.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass-middleware@1.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient symlink protection. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic is insufficient when extracting tar files that contain both a directory and a symlink with the same name as the directory. This order of operations results in the directory being created and added to the node-tar directory cache. When a directory is present in the directory cache, subsequent calls to mkdir for that directory are skipped. However, this is also where node-tar checks for symlinks occur. By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location.

Remediation

Upgrade tar to version 3.2.3, 4.4.15, 5.0.7, 6.1.2 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
    Remediation: Upgrade to bcrypt@2.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass-middleware@1.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient absolute path sanitization.

node-tar aims to prevent extraction of absolute file paths by turning absolute paths into relative paths when the preservePaths flag is not set to true. This is achieved by stripping the absolute path root from any absolute file paths contained in a tar file. For example, the path /home/user/.bashrc would turn into home/user/.bashrc.

This logic is insufficient when file paths contain repeated path roots such as ////home/user/.bashrc. node-tar only strips a single path root from such paths. When given an absolute file path with repeating path roots, the resulting path (e.g. ///home/user/.bashrc) still resolves to an absolute path.

Remediation

Upgrade tar to version 3.2.2, 4.4.14, 5.0.6, 6.1.1 or higher.

References

high severity

Internal Property Tampering

  • Vulnerable module: bson
  • Introduced through: mongoose@4.13.21

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mongoose@4.13.21 bson@1.0.9
    Remediation: Upgrade to mongoose@5.3.9.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mongoose@4.13.21 mongodb@2.2.34 mongodb-core@2.1.18 bson@1.0.9
    Remediation: Upgrade to mongoose@5.2.9.

Overview

bson is a BSON Parser for node and browser.

Affected versions of this package are vulnerable to Internal Property Tampering. The package will ignore an unknown value for an object's _bsotype, leading to cases where an object is serialized as a document rather than the intended BSON type.

NOTE: This vulnerability has also been identified as: CVE-2019-2391

Remediation

Upgrade bson to version 1.1.4 or higher.

References

high severity

Internal Property Tampering

  • Vulnerable module: bson
  • Introduced through: mongoose@4.13.21

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mongoose@4.13.21 bson@1.0.9
    Remediation: Upgrade to mongoose@5.3.9.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mongoose@4.13.21 mongodb@2.2.34 mongodb-core@2.1.18 bson@1.0.9
    Remediation: Upgrade to mongoose@5.2.9.

Overview

bson is a BSON Parser for node and browser.

Affected versions of this package are vulnerable to Internal Property Tampering. The package will ignore an unknown value for an object's _bsotype, leading to cases where an object is serialized as a document rather than the intended BSON type.

NOTE: This vulnerability has also been identified as: CVE-2020-7610

Remediation

Upgrade bson to version 1.1.4 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mongoose
  • Introduced through: mongoose@4.13.21

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mongoose@4.13.21
    Remediation: Upgrade to mongoose@5.13.20.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Prototype Pollution in document.js, via update functions such as findByIdAndUpdate(). This allows attackers to achieve remote code execution.

Note: Only applications using Express and EJS are vulnerable.

PoC


import { connect, model, Schema } from 'mongoose';

await connect('mongodb://127.0.0.1:27017/exploit');

const Example = model('Example', new Schema({ hello: String }));

const example = await new Example({ hello: 'world!' }).save();
await Example.findByIdAndUpdate(example._id, {
    $rename: {
        hello: '__proto__.polluted'
    }
});

// this is what causes the pollution
await Example.find();

const test = {};
console.log(test.polluted); // world!
console.log(Object.prototype); // [Object: null prototype] { polluted: 'world!' }

process.exit();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mongoose to version 5.13.20, 6.11.3, 7.3.4 or higher.

References

high severity

Remote Code Execution (RCE)

  • Vulnerable module: pac-resolver
  • Introduced through: mailgun-js@0.13.1

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mailgun-js@0.13.1 proxy-agent@2.1.0 pac-proxy-agent@2.0.2 pac-resolver@3.0.0

Overview

Affected versions of this package are vulnerable to Remote Code Execution (RCE). This can occur when used with untrusted input, due to unsafe PAC file handling.

In order to exploit this vulnerability in practice, this either requires an attacker on your local network, a specific vulnerable configuration, or some second vulnerability that allows an attacker to set your config values.

NOTE: The fix for this vulnerability is applied in the node-degenerator library, a dependency is written by the same maintainer.

PoC

const pac = require('pac-resolver');

// Should keep running forever (if not vulnerable):
setInterval(() => {
    console.log("Still running");
}, 1000);

// Parsing a malicious PAC file unexpectedly executes unsandboxed code:
pac(`
    // Real PAC config:
    function FindProxyForURL(url, host) {
        return "DIRECT";
    }

    // But also run arbitrary code:
    var f = this.constructor.constructor(\`
        // Running outside the sandbox:
        console.log('Read env vars:', process.env);
        console.log('!!! PAC file is running arbitrary code !!!');
        console.log('Can read & could exfiltrate env vars ^');
        console.log('Can kill parsing process, like so:');
        process.exit(100); // Kill the vulnerable process
        // etc etc
    \`);

    f();

Remediation

Upgrade pac-resolver to version 5.0.0 or higher.

References

high severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: netmask
  • Introduced through: mailgun-js@0.13.1

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mailgun-js@0.13.1 proxy-agent@2.1.0 pac-proxy-agent@2.0.2 pac-resolver@3.0.0 netmask@1.0.6

Overview

netmask is a library to parse IPv4 CIDR blocks.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF). It incorrectly evaluates individual IPv4 octets that contain octal strings as left-stripped integers, leading to an inordinate attack surface on hundreds of thousands of projects that rely on netmask to filter or evaluate IPv4 block ranges, both inbound and outbound.

For example, a remote unauthenticated attacker can request local resources using input data 0177.0.0.1 (127.0.0.1), which netmask evaluates as the public IP 177.0.0.1. Contrastingly, a remote authenticated or unauthenticated attacker can input the data 0127.0.0.01 (87.0.0.1) as localhost, yet the input data is a public IP and can potentially cause local and remote file inclusion (LFI/RFI). A remote authenticated or unauthenticated attacker can bypass packages that rely on netmask to filter IP address blocks to reach intranets, VPNs, containers, adjacent VPC instances, or LAN hosts, using input data such as 012.0.0.1 (10.0.0.1), which netmask evaluates as 12.0.0.1 (public).

NOTE: This vulnerability has also been identified as: CVE-2021-29418

Remediation

Upgrade netmask to version 2.0.1 or higher.

References

high severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: netmask
  • Introduced through: mailgun-js@0.13.1

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mailgun-js@0.13.1 proxy-agent@2.1.0 pac-proxy-agent@2.0.2 pac-resolver@3.0.0 netmask@1.0.6

Overview

netmask is a library to parse IPv4 CIDR blocks.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF). It incorrectly evaluates individual IPv4 octets that contain octal strings as left-stripped integers, leading to an inordinate attack surface on hundreds of thousands of projects that rely on netmask to filter or evaluate IPv4 block ranges, both inbound and outbound.

For example, a remote unauthenticated attacker can request local resources using input data 0177.0.0.1 (127.0.0.1), which netmask evaluates as the public IP 177.0.0.1. Contrastingly, a remote authenticated or unauthenticated attacker can input the data 0127.0.0.01 (87.0.0.1) as localhost, yet the input data is a public IP and can potentially cause local and remote file inclusion (LFI/RFI). A remote authenticated or unauthenticated attacker can bypass packages that rely on netmask to filter IP address blocks to reach intranets, VPNs, containers, adjacent VPC instances, or LAN hosts, using input data such as 012.0.0.1 (10.0.0.1), which netmask evaluates as 12.0.0.1 (public).

NOTE: This vulnerability has also been identified as: CVE-2021-28918

Remediation

Upgrade netmask to version 2.0.1 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ansi-regex
  • Introduced through: node-sass-middleware@0.11.0, webpack@3.12.0 and others

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 yargs@8.0.2 cliui@3.2.0 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to webpack@4.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 yargs@8.0.2 cliui@3.2.0 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to webpack@4.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 npmlog@4.1.2 gauge@2.7.4 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 npmlog@4.1.2 gauge@2.7.4 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass-middleware@1.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 yargs@8.0.2 cliui@3.2.0 wrap-ansi@2.1.0 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to webpack@4.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-plugin-transform-class-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-plugin-transform-class-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 npmlog@4.1.2 gauge@2.7.4 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 npmlog@4.1.2 gauge@2.7.4 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass-middleware@1.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 yargs@8.0.2 cliui@3.2.0 wrap-ansi@2.1.0 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to webpack@4.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 npmlog@4.1.2 gauge@2.7.4 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass-middleware@1.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-computed-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-computed-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-systemjs@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-systemjs@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-helper-call-delegate@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-helper-call-delegate@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-block-scoping@6.26.0 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-computed-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-computed-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-systemjs@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-systemjs@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-parameters@6.24.1 babel-helper-call-delegate@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-parameters@6.24.1 babel-helper-call-delegate@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 npmlog@4.1.2 gauge@2.7.4 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass-middleware@1.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-plugin-transform-class-constructor-call@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-exponentiation-operator@6.24.1 babel-helper-builder-binary-assignment-operator-visitor@6.24.1 babel-helper-explode-assignable-expression@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-function-name@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-object-super@6.24.1 babel-helper-replace-supers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-plugin-transform-class-constructor-call@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-exponentiation-operator@6.24.1 babel-helper-builder-binary-assignment-operator-visitor@6.24.1 babel-helper-explode-assignable-expression@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-helper-explode-class@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 babel-helpers@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-classes@6.24.1 babel-helper-define-map@6.26.0 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-es2015@6.24.1 babel-plugin-transform-es2015-modules-umd@6.24.1 babel-plugin-transform-es2015-modules-amd@6.24.1 babel-plugin-transform-es2015-modules-commonjs@6.26.2 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-helper-explode-class@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-helper-explode-class@6.24.1 babel-helper-bindify-decorators@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-class-properties@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-plugin-transform-decorators@6.24.1 babel-helper-explode-class@6.24.1 babel-helper-bindify-decorators@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-exponentiation-operator@6.24.1 babel-helper-builder-binary-assignment-operator-visitor@6.24.1 babel-helper-explode-assignable-expression@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-exponentiation-operator@6.24.1 babel-helper-builder-binary-assignment-operator-visitor@6.24.1 babel-helper-explode-assignable-expression@6.24.1 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-to-generator@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-stage-0@6.24.1 babel-preset-stage-1@6.24.1 babel-preset-stage-2@6.24.1 babel-preset-stage-3@6.24.1 babel-plugin-transform-async-generator-functions@6.24.1 babel-helper-remap-async-to-generator@6.24.1 babel-helper-function-name@6.24.1 babel-template@6.26.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the sub-patterns [[\\]()#;?]* and (?:;[-a-zA-Z\\d\\/#&.:=?%@~_]*)*.

PoC

import ansiRegex from 'ansi-regex';

for(var i = 1; i <= 50000; i++) {
    var time = Date.now();
    var attack_str = "\u001B["+";".repeat(i*10000);
    ansiRegex().test(attack_str)
    var time_cost = Date.now() - time;
    console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ansi-regex to version 3.0.1, 4.1.1, 5.0.1, 6.0.1 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: async
  • Introduced through: mailgun-js@0.13.1 and mongoose@4.13.21

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mailgun-js@0.13.1 async@2.5.0
    Remediation: Upgrade to mailgun-js@0.14.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mongoose@4.13.21 async@2.6.0
    Remediation: Upgrade to mongoose@5.7.3.

Overview

Affected versions of this package are vulnerable to Prototype Pollution via the mapValues() method, due to improper check in createObjectIterator function.

PoC

//when objects are parsed, all properties are created as own (the objects can come from outside sources (http requests/ file))
const hasOwn = JSON.parse('{"__proto__": {"isAdmin": true}}');

//does not have the property,  because it's inside object's own "__proto__"
console.log(hasOwn.isAdmin);

async.mapValues(hasOwn, (val, key, cb) => cb(null, val), (error, result) => {
  // after the method executes, hasOwn.__proto__ value (isAdmin: true) replaces the prototype of the newly created object, leading to potential exploits.
  console.log(result.isAdmin);
});

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade async to version 2.6.4, 3.2.2 or higher.

References

high severity

Insecure Encryption

  • Vulnerable module: bcrypt
  • Introduced through: bcrypt@1.0.3

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3
    Remediation: Upgrade to bcrypt@5.0.0.

Overview

bcrypt is an A library to help you hash passwords.

Affected versions of this package are vulnerable to Insecure Encryption. Data is truncated wrong when its length is greater than 255 bytes.

Remediation

Upgrade bcrypt to version 5.0.0 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: dicer
  • Introduced through: swagger-tools@0.10.4

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 swagger-tools@0.10.4 multer@1.4.4 busboy@0.2.14 dicer@0.2.5

Overview

Affected versions of this package are vulnerable to Denial of Service (DoS). A malicious attacker can send a modified form to server, and crash the nodejs service. An attacker could sent the payload again and again so that the service continuously crashes.

PoC:

    fetch('form-image', {
      method: 'POST',
      headers: {
        ['content-type']: 'multipart/form-data; boundary=----WebKitFormBoundaryoo6vortfDzBsDiro',
        ['content-length']: '145',
        host: '127.0.0.1:8000',
        connection: 'keep-alive',
      },
      body: '------WebKitFormBoundaryoo6vortfDzBsDiro\r\n Content-Disposition: form-data; name="bildbeschreibung"\r\n\r\n\r\n------WebKitFormBoundaryoo6vortfDzBsDiro--'
    });

Remediation

There is no fixed version for dicer.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: engine.io
  • Introduced through: socket.io@2.5.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 socket.io@2.5.0 engine.io@3.6.1
    Remediation: Upgrade to socket.io@3.0.0.

Overview

engine.io is a realtime engine behind Socket.IO. It provides the foundation of a bidirectional connection between client and server

Affected versions of this package are vulnerable to Denial of Service (DoS) via a POST request to the long polling transport.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade engine.io to version 4.0.0 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: mongodb
  • Introduced through: mongoose@4.13.21

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mongoose@4.13.21 mongodb@2.2.34
    Remediation: Upgrade to mongoose@5.4.10.

Overview

mongodb is an official MongoDB driver for Node.js.

Affected versions of this package are vulnerable to Denial of Service (DoS). The package fails to properly catch an exception when a collection name is invalid and the DB does not exist, crashing the application.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade mongodb to version 3.1.13 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mquery
  • Introduced through: mongoose@4.13.21

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mongoose@4.13.21 mquery@2.3.3
    Remediation: Upgrade to mongoose@5.12.3.

Overview

mquery is an Expressive query building for MongoDB

Affected versions of this package are vulnerable to Prototype Pollution via the mergeClone() function.

PoC by zhou, peng

mquery = require('mquery');
var malicious_payload = '{"__proto__":{"polluted":"HACKED"}}';
console.log('Before:', {}.polluted); // undefined
mquery.utils.mergeClone({}, JSON.parse(malicious_payload));
console.log('After:', {}.polluted); // HACKED

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mquery to version 3.2.5 or higher.

References

high severity

Prototype Poisoning

  • Vulnerable module: qs
  • Introduced through: swagger-tools@0.10.4

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 swagger-tools@0.10.4 body-parser@1.18.2 qs@6.5.1

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Prototype Poisoning which allows attackers to cause a Node process to hang, processing an Array object whose prototype has been replaced by one with an excessive length value.

Note: In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade qs to version 6.2.4, 6.3.3, 6.4.1, 6.5.3, 6.6.1, 6.7.3, 6.8.3, 6.9.7, 6.10.3 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: semver
  • Introduced through: mailgun-js@0.13.1 and node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mailgun-js@0.13.1 proxy-agent@2.1.0 agent-base@2.1.1 semver@5.0.3
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mailgun-js@0.13.1 proxy-agent@2.1.0 http-proxy-agent@1.0.0 agent-base@2.1.1 semver@5.0.3
    Remediation: Upgrade to mailgun-js@0.17.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mailgun-js@0.13.1 proxy-agent@2.1.0 https-proxy-agent@1.0.0 agent-base@2.1.1 semver@5.0.3
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mailgun-js@0.13.1 proxy-agent@2.1.0 socks-proxy-agent@2.1.1 agent-base@2.1.1 semver@5.0.3
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 semver@5.3.0
    Remediation: Upgrade to node-sass-middleware@1.0.0.

Overview

semver is a semantic version parser used by npm.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.

PoC


const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]

console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})

const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade semver to version 5.7.2, 6.3.1, 7.5.2 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: trim-newlines
  • Introduced through: node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 meow@3.7.0 trim-newlines@1.0.0
    Remediation: Upgrade to node-sass-middleware@1.0.0.

Overview

trim-newlines is a Trim newlines from the start and/or end of a string

Affected versions of this package are vulnerable to Denial of Service (DoS) via the end() method.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade trim-newlines to version 3.0.1, 4.0.1 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: unset-value
  • Introduced through: babel-cli@6.26.0 and webpack@3.12.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 chokidar@1.7.0 readdirp@2.2.1 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 chokidar@1.7.0 readdirp@2.2.1 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 chokidar@1.7.0 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 chokidar@1.7.0 readdirp@2.2.1 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 chokidar@1.7.0 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0

Overview

Affected versions of this package are vulnerable to Prototype Pollution via the unset function in index.js, because it allows access to object prototype properties.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade unset-value to version 2.0.1 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mquery
  • Introduced through: mongoose@4.13.21

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mongoose@4.13.21 mquery@2.3.3
    Remediation: Upgrade to mongoose@5.11.7.

Overview

mquery is an Expressive query building for MongoDB

Affected versions of this package are vulnerable to Prototype Pollution via the merge function within lib/utils.js. Depending on if user input is provided, an attacker can overwrite and pollute the object prototype of a program.

PoC

   require('./env').getCollection(function(err, collection) {
      assert.ifError(err);
      col = collection;
      done();
    });
    var payload = JSON.parse('{"__proto__": {"polluted": "vulnerable"}}');
    var m = mquery(payload);
    console.log({}.polluted);
// The empty object {} will have a property called polluted which will print vulnerable

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mquery to version 3.2.3 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mongoose
  • Introduced through: mongoose@4.13.21

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mongoose@4.13.21
    Remediation: Upgrade to mongoose@5.13.15.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Prototype Pollution in the Schema.path() function.

Note: CVE-2022-24304 is a duplicate of CVE-2022-2564.

PoC:

const mongoose = require('mongoose');
const schema = new mongoose.Schema();

malicious_payload = '__proto__.toString'

schema.path(malicious_payload, [String])

x = {}
console.log(x.toString())

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mongoose to version 5.13.15, 6.4.6 or higher.

References

medium severity

Use of a Broken or Risky Cryptographic Algorithm

  • Vulnerable module: jsonwebtoken
  • Introduced through: jsonwebtoken@8.5.1

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 jsonwebtoken@8.5.1
    Remediation: Upgrade to jsonwebtoken@9.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Use of a Broken or Risky Cryptographic Algorithm such that the library can be misconfigured to use legacy, insecure key types for signature verification. For example, DSA keys could be used with the RS256 algorithm.

Exploitability

Users are affected when using an algorithm and a key type other than the combinations mentioned below:

EC: ES256, ES384, ES512

RSA: RS256, RS384, RS512, PS256, PS384, PS512

RSA-PSS: PS256, PS384, PS512

And for Elliptic Curve algorithms:

ES256: prime256v1

ES384: secp384r1

ES512: secp521r1

Workaround

Users who are unable to upgrade to the fixed version can use the allowInvalidAsymmetricKeyTypes option to true in the sign() and verify() functions to continue usage of invalid key type/algorithm combination in 9.0.0 for legacy compatibility.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Improper Restriction of Security Token Assignment

  • Vulnerable module: jsonwebtoken
  • Introduced through: jsonwebtoken@8.5.1

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 jsonwebtoken@8.5.1
    Remediation: Upgrade to jsonwebtoken@9.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Improper Restriction of Security Token Assignment via the secretOrPublicKey argument due to misconfigurations of the key retrieval function jwt.verify(). Exploiting this vulnerability might result in incorrect verification of forged tokens when tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm.

Note: This vulnerability affects your application if it supports the usage of both symmetric and asymmetric keys in jwt.verify() implementation with the same key retrieval function.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Denial of Service (DoS)

  • Vulnerable module: node-sass
  • Introduced through: node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Denial of Service (DoS). Uncontrolled recursion is possible in Sass::Complex_Selector::perform in ast.hpp and Sass::Inspect::operator in inspect.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-Bounds

  • Vulnerable module: node-sass
  • Introduced through: node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-Bounds. A heap-based buffer over-read exists in Sass::Prelexer::parenthese_scope in prelexer.hpp. node-sass is affected by this vulnerability due to its bundled usage of libsass.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-Bounds

  • Vulnerable module: node-sass
  • Introduced through: node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-Bounds via Sass::Prelexer::alternatives in prelexer.hpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-bounds Read

  • Vulnerable module: node-sass
  • Introduced through: node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-bounds Read. The function handle_error in sass_context.cpp allows attackers to cause a denial-of-service resulting from a heap-based buffer over-read via a crafted sass file. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: request
  • Introduced through: bcrypt@1.0.3 and node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 request@2.88.2
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 request@2.88.2
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 request@2.88.2

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).

NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.

Remediation

A fix was pushed into the master branch but not yet published.

References

medium severity
new

Uncontrolled Resource Consumption ('Resource Exhaustion')

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass-middleware@1.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Uncontrolled Resource Consumption ('Resource Exhaustion') due to the lack of folders count validation during the folder creation process. An attacker who generates a large number of sub-folders can consume memory on the system running the software and even crash the client within few seconds of running it using a path with too many sub-folders inside.

Remediation

Upgrade tar to version 6.2.1 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: tough-cookie
  • Introduced through: bcrypt@1.0.3 and node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 request@2.88.2 tough-cookie@2.5.0

Overview

tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.

Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.

PoC

// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
  "Slonser=polluted; Domain=__proto__; Path=/notauth",
  "https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
  "Auth=Lol; Domain=google.com; Path=/notauth",
  "https://google.com/"
);

//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade tough-cookie to version 4.1.3 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: json5
  • Introduced through: webpack@3.12.0 and babel-cli@6.26.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 json5@0.5.1
    Remediation: Upgrade to webpack@4.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-core@6.26.3 json5@0.5.1
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 babel-register@6.26.0 babel-core@6.26.3 json5@0.5.1

Overview

Affected versions of this package are vulnerable to Prototype Pollution via the parse method , which does not restrict parsing of keys named __proto__, allowing specially crafted strings to pollute the prototype of the resulting object. This pollutes the prototype of the object returned by JSON5.parse and not the global Object prototype (which is the commonly understood definition of Prototype Pollution). Therefore, the actual impact will depend on how applications utilize the returned object and how they filter unwanted keys.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade json5 to version 1.0.2, 2.2.2 or higher.

References

medium severity

Improper Authentication

  • Vulnerable module: jsonwebtoken
  • Introduced through: jsonwebtoken@8.5.1

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 jsonwebtoken@8.5.1
    Remediation: Upgrade to jsonwebtoken@9.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Improper Authentication such that the lack of algorithm definition in the jwt.verify() function can lead to signature validation bypass due to defaulting to the none algorithm for signature verification.

Exploitability

Users are affected only if all of the following conditions are true for the jwt.verify() function:

  1. A token with no signature is received.

  2. No algorithms are specified.

  3. A falsy (e.g., null, false, undefined) secret or key is passed.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

HTTP Header Injection

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@4.7.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 nodemailer@4.7.0
    Remediation: Upgrade to nodemailer@6.6.1.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to HTTP Header Injection if unsanitized user input that may contain newlines and carriage returns is passed into an address object.

PoC:

const userEmail = 'foo@bar.comrnSubject: foobar'; // imagine this comes from e.g. HTTP request params or is otherwise user-controllable
await transporter.sendMail({
from: '...',
to: '...',
replyTo: {
name: 'Customer',
address: userEmail,
},
subject: 'My Subject',
text: message,
});

Remediation

Upgrade nodemailer to version 6.6.1 or higher.

References

medium severity

Missing Release of Resource after Effective Lifetime

  • Vulnerable module: inflight
  • Introduced through: babel-cli@6.26.0, yamljs@0.3.0 and others

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 yamljs@0.3.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 sass-graph@2.2.5 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 true-case-path@1.0.3 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 gaze@1.1.3 globule@1.3.4 glob@7.1.7 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 fstream-ignore@1.0.5 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6

Overview

Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.

Exploiting this vulnerability results in crashing the node process or in the application crash.

Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.

To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.

PoC

const inflight = require('inflight');

function testInflight() {
  let i = 0;
  function scheduleNext() {
    let key = `key-${i++}`;
    const callback = () => {
    };
    for (let j = 0; j < 1000000; j++) {
      inflight(key, callback);
    }

    setImmediate(scheduleNext);
  }


  if (i % 100 === 0) {
    console.log(process.memoryUsage());
  }

  scheduleNext();
}

testInflight();

Remediation

There is no fixed version for inflight.

References

medium severity

Man-in-the-Middle (MitM)

  • Vulnerable module: https-proxy-agent
  • Introduced through: mailgun-js@0.13.1

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mailgun-js@0.13.1 proxy-agent@2.1.0 https-proxy-agent@1.0.0
    Remediation: Upgrade to mailgun-js@0.17.0.

Overview

https-proxy-agent is a module that provides an http.Agent implementation that connects to a specified HTTP or HTTPS proxy server, and can be used with the built-in https module.

Affected versions of this package are vulnerable to Man-in-the-Middle (MitM). When targeting a HTTP proxy, https-proxy-agent opens a socket to the proxy, and sends the proxy server a CONNECT request. If the proxy server responds with something other than a HTTP response 200, https-proxy-agent incorrectly returns the socket without any TLS upgrade. This request data may contain basic auth credentials or other secrets, is sent over an unencrypted connection. A suitably positioned attacker could steal these secrets and impersonate the client.

PoC by Kris Adler

var url = require('url');
var https = require('https');
var HttpsProxyAgent = require('https-proxy-agent');

var proxyOpts = url.parse('http://127.0.0.1:80');
var opts = url.parse('https://www.google.com');
var agent = new HttpsProxyAgent(proxyOpts);
opts.agent = agent;
opts.auth = 'username:password';
https.get(opts);

Remediation

Upgrade https-proxy-agent to version 2.2.3 or higher.

References

medium severity

Cryptographic Issues

  • Vulnerable module: bcrypt
  • Introduced through: bcrypt@1.0.3

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3
    Remediation: Upgrade to bcrypt@5.0.0.

Overview

bcrypt is an A library to help you hash passwords.

Affected versions of this package are vulnerable to Cryptographic Issues. When hashing a password containing an ASCII NUL character, that character acts as the string terminator. Any following characters are ignored.

Remediation

Upgrade bcrypt to version 5.0.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: mongoose
  • Introduced through: mongoose@4.13.21

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mongoose@4.13.21
    Remediation: Upgrade to mongoose@5.12.2.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Prototype Pollution. The mongoose.Schema() function is subject to prototype pollution due to the recursively calling of Schema.prototype.add() function to add new items into the schema object. This vulnerability allows modification of the Object prototype.

PoC

mongoose = require('mongoose');
mongoose.version; //'5.12.0'
var malicious_payload = '{"__proto__":{"polluted":"HACKED"}}';
console.log('Before:', {}.polluted); // undefined
mongoose.Schema(JSON.parse(malicious_payload));
console.log('After:', {}.polluted); // HACKED

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mongoose to version 5.12.2 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: mpath
  • Introduced through: mongoose@4.13.21

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 mongoose@4.13.21 mpath@0.5.1
    Remediation: Upgrade to mongoose@5.13.9.

Overview

mpath is a package that gets/sets javascript object values using MongoDB-like path notation.

Affected versions of this package are vulnerable to Prototype Pollution. A type confusion vulnerability can lead to a bypass of CVE-2018-16490. In particular, the condition ignoreProperties.indexOf(parts[i]) !== -1 returns -1 if parts[i] is ['__proto__']. This is because the method that has been called if the input is an array is Array.prototype.indexOf() and not String.prototype.indexOf(). They behave differently depending on the type of the input.

PoC

const mpath = require('mpath');
// mpath.set(['__proto__', 'polluted'], 'yes', {});
// console.log(polluted); // ReferenceError: polluted is not defined

mpath.set([['__proto__'], 'polluted'], 'yes', {});
console.log(polluted); // yes

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mpath to version 0.8.4 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: yargs-parser
  • Introduced through: webpack@3.12.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 yargs@8.0.2 yargs-parser@7.0.0
    Remediation: Upgrade to webpack@4.0.0.

Overview

yargs-parser is a mighty option parser used by yargs.

Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a __proto__ payload.

Our research team checked several attack vectors to verify this vulnerability:

  1. It could be used for privilege escalation.
  2. The library could be used to parse user input received from different sources:
    • terminal emulators
    • system calls from other code bases
    • CLI RPC servers

PoC by Snyk

const parser = require("yargs-parser");
console.log(parser('--foo.__proto__.bar baz'));
console.log(({}).bar);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade yargs-parser to version 5.0.1, 13.1.2, 15.0.1, 18.1.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: browserslist
  • Introduced through: babel-preset-env@1.7.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-preset-env@1.7.0 browserslist@3.2.8

Overview

browserslist is a Share target browsers between different front-end tools, like Autoprefixer, Stylelint and babel-env-preset

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) during parsing of queries.

PoC by Yeting Li

var browserslist = require("browserslist")
function build_attack(n) {
    var ret = "> "
    for (var i = 0; i < n; i++) {
        ret += "1"
    }
    return ret + "!";
}

// browserslist('> 1%')

//browserslist(build_attack(500000))
for(var i = 1; i <= 500000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        try{
            browserslist(attack_str);
            var time_cost = Date.now() - time;
            console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
            }
        catch(e){
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
        }
    }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade browserslist to version 4.16.5 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: glob-parent
  • Introduced through: babel-cli@6.26.0 and webpack@3.12.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 chokidar@1.7.0 glob-parent@2.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 chokidar@1.7.0 anymatch@1.3.2 micromatch@2.3.11 parse-glob@3.0.4 glob-base@0.3.0 glob-parent@2.0.0
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 watchpack@1.7.5 watchpack-chokidar2@2.0.1 chokidar@2.1.8 glob-parent@3.1.0

Overview

glob-parent is a package that helps extracting the non-magic parent path from a glob string.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The enclosure regex used to check for strings ending in enclosure containing path separator.

PoC by Yeting Li

var globParent = require("glob-parent")
function build_attack(n) {
var ret = "{"
for (var i = 0; i < n; i++) {
ret += "/"
}

return ret;
}

globParent(build_attack(5000));

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade glob-parent to version 5.1.2 or higher.

References

medium severity

Improper Certificate Validation

  • Vulnerable module: node-sass
  • Introduced through: node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1
    Remediation: Upgrade to node-sass-middleware@1.0.0.

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Improper Certificate Validation. Certificate validation is disabled by default when requesting binaries, even if the user is not specifying an alternative download path.

Remediation

Upgrade node-sass to version 7.0.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@4.7.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 nodemailer@4.7.0
    Remediation: Upgrade to nodemailer@6.9.9.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the attachDataUrls parameter or when parsing attachments with an embedded file. An attacker can exploit this vulnerability by sending a specially crafted email that triggers inefficient regular expression evaluation, leading to excessive consumption of CPU resources.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade nodemailer to version 6.9.9 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: redis
  • Introduced through: redis@2.8.0 and connect-redis@3.4.2

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 redis@2.8.0
    Remediation: Upgrade to redis@3.1.1.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 connect-redis@3.4.2 redis@2.8.0
    Remediation: Upgrade to connect-redis@4.0.0.

Overview

redis is an A high performance Redis client.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). When a client is in monitoring mode, monitor_regex, which is used to detected monitor messages` could cause exponential backtracking on some strings, leading to denial of service.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade redis to version 3.1.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: scss-tokenizer
  • Introduced through: node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 sass-graph@2.2.5 scss-tokenizer@0.2.3
    Remediation: Upgrade to node-sass-middleware@1.0.0.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the loadAnnotation() function, due to the usage of insecure regex.

PoC

var scss = require("scss-tokenizer")
function build_attack(n) {
    var ret = "a{}"
    for (var i = 0; i < n; i++) {
        ret += "/*# sourceMappingURL="
    }
    return ret + "!";
}

// postcss.parse('a{}/*# sourceMappingURL=a.css.map */')
for(var i = 1; i <= 500000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        try{
            scss.tokenize(attack_str)
            var time_cost = Date.now() - time;
            console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
            }
        catch(e){
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
        }
    }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade scss-tokenizer to version 0.4.3 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: uglify-js
  • Introduced through: webpack@3.12.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 uglifyjs-webpack-plugin@0.4.6 uglify-js@2.8.29
    Remediation: Upgrade to webpack@4.26.0.

Overview

uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the string_template and the decode_template functions.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade uglify-js to version 3.14.3 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: swagger-tools@0.10.4

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 swagger-tools@0.10.4 z-schema@3.25.1 validator@10.11.0

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isSlug function

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = "111"
    for (var i = 0; i < n; i++) {
        ret += "a"
    }

    return ret+"_";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.isSlug(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: swagger-tools@0.10.4

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 swagger-tools@0.10.4 z-schema@3.25.1 validator@10.11.0

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isHSL function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = "hsla(0"
    for (var i = 0; i < n; i++) {
        ret += " "
    }

    return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.isHSL(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: swagger-tools@0.10.4

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 swagger-tools@0.10.4 z-schema@3.25.1 validator@10.11.0

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isEmail function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = ""
    for (var i = 0; i < n; i++) {
        ret += "<"
    }

    return ret+"";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        validator.isEmail(attack_str,{ allow_display_name: true })
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Denial of Service (DoS)

  • Vulnerable module: mem
  • Introduced through: webpack@3.12.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 webpack@3.12.0 yargs@8.0.2 os-locale@2.1.0 mem@1.1.0
    Remediation: Upgrade to webpack@4.0.0.

Overview

mem is an optimization used to speed up consecutive function calls by caching the result of calls with identical input.

Affected versions of this package are vulnerable to Denial of Service (DoS). Old results were deleted from the cache and could cause a memory leak.

details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade mem to version 4.0.0 or higher.

References

medium severity

Session Fixation

  • Vulnerable module: passport
  • Introduced through: passport@0.4.1

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 passport@0.4.1
    Remediation: Upgrade to passport@0.6.0.

Overview

passport is a Simple, unobtrusive authentication for Node.js.

Affected versions of this package are vulnerable to Session Fixation. When a user logs in or logs out, the session is regenerated instead of being closed.

Remediation

Upgrade passport to version 0.6.0 or higher.

References

medium severity

NULL Pointer Dereference

  • Vulnerable module: node-sass
  • Introduced through: node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to NULL Pointer Dereference via Sass::Parser::parseCompoundSelectorin parser_selectors.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-bounds Read

  • Vulnerable module: node-sass
  • Introduced through: node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-bounds Read via Sass::weaveParents in ast_sel_weave.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

There is no fixed version for node-sass.

References

medium severity

Uncontrolled Recursion

  • Vulnerable module: node-sass
  • Introduced through: node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Uncontrolled Recursion via Sass::Eval::operator()(Sass::Binary_Expression*) in eval.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: braces
  • Introduced through: babel-cli@6.26.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 chokidar@1.7.0 anymatch@1.3.2 micromatch@2.3.11 braces@1.8.5
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 babel-cli@6.26.0 chokidar@1.7.0 anymatch@1.3.2 micromatch@2.3.11 braces@1.8.5

Overview

braces is a Bash-like brace expansion, implemented in JavaScript.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It used a regular expression (^\{(,+(?:(\{,+\})*),*|,*(?:(\{,+\})*),+)\}) in order to detects empty braces. This can cause an impact of about 10 seconds matching time for data 50K characters long.

Disclosure Timeline

  • Feb 15th, 2018 - Initial Disclosure to package owner
  • Feb 16th, 2018 - Initial Response from package owner
  • Feb 18th, 2018 - Fix issued
  • Feb 19th, 2018 - Vulnerability published

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade braces to version 2.3.1 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: debug
  • Introduced through: socket.io@2.5.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 socket.io@2.5.0 debug@4.1.1
    Remediation: Upgrade to socket.io@3.0.5.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 socket.io@2.5.0 engine.io@3.6.1 debug@4.1.1
    Remediation: Upgrade to socket.io@3.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 socket.io@2.5.0 socket.io-parser@3.4.3 debug@4.1.1
    Remediation: Upgrade to socket.io@3.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 socket.io@2.5.0 debug@4.1.1
    Remediation: Upgrade to socket.io@3.0.5.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 socket.io@2.5.0 engine.io@3.6.1 debug@4.1.1
    Remediation: Upgrade to socket.io@3.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 socket.io@2.5.0 socket.io-parser@3.4.3 debug@4.1.1
    Remediation: Upgrade to socket.io@3.0.0.

Overview

debug is a small debugging utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in the function useColors via manipulation of the str argument. The vulnerability can cause a very low impact of about 2 seconds of matching time for data 50k characters long.

Note: CVE-2017-20165 is a duplicate of this vulnerability.

PoC

Use the following regex in the %o formatter.

/\s*\n\s*/

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade debug to version 2.6.9, 3.1.0, 3.2.7, 4.3.1 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: tar
  • Introduced through: bcrypt@1.0.3 and node-sass-middleware@0.11.0

Detailed paths

  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar@2.2.2
    Remediation: Upgrade to bcrypt@2.0.0.
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 bcrypt@1.0.3 node-pre-gyp@0.6.36 tar-pack@3.4.1 tar@2.2.2
  • Introduced through: laundree@laundree/laundree#72d9fc350143b0ad443e84910edc7a049d363f28 node-sass-middleware@0.11.0 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass-middleware@1.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). When stripping the trailing slash from files arguments, the f.replace(/\/+$/, '') performance of this function can exponentially degrade when f contains many / characters resulting in ReDoS.

This vulnerability is not likely to be exploitable as it requires that the untrusted input is being passed into the tar.extract() or tar.list() array of entries to parse/extract, which would be unusual.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade tar to version 6.1.4, 5.0.8, 4.4.16 or higher.

References