
Uncharted territories:

The untold tale of
Helm Chart security

powered by

N

W E

S

Table of contents

Introduction					 4

TL;DR						 5

Glossary						 6

Helm Chart landscape	 					 9

Images								 10

dduportal/bats:0.4.0						 12

postgres:9.6.2						 13

unguiculus/docker-python3-phantomjs-selenium:v1		 14

Vulnerabilities							 15

Severities							 16

Types							 18

Remediation							 21

Helm Chart security 					 22

Helm Charts 						 9

All rights reserved. 2019 © Snyk 3

“For the cloud native ecosystem to reach its full potential, we need to collectively

improve security. And that means applying a set of patterns, techniques, and

tools that focus specifically on cloud native technologies. The Helm Project

is deeply interested in the security of our core software, our charts, and the

practices of the community. And we eagerly welcome a new breed of tools that

help us identify and fix vulnerabilities proactively.

- Matt Butcher

Helm Org Maintainer

All rights reserved. 2019 © Snyk 4

Introduction

Helm is undoubtedly one of the most popular ways of installing software on Kubernetes today. It’s widely used for deploying first party

applications and has a vibrant ecosystem of shared content. Helm Charts make getting started with Kubernetes easier. If you’re using a

popular piece of software like PostgreSQL or Redis or GitLab, you can probably just run `helm install` instead of starting from scratch by

identifying images and writing lots of configuration. Not only does this save time, but you also benefit from the expertise of the people

packaging the software and making it easily configurable.

But like any repository of third-party content, vulnerabilities in popular Helm Charts can pose a risk to lots of users at once. Helping

developers use third party content securely is what we do at Snyk. We already provide developer tools to help secure open source

dependencies for popular package managers (like Java, .NET, Python, Node,js, Ruby and more), as well as providing tools to detect

vulnerabilities in container images.

With this report we wanted to take a look at the state of vulnerabilities in Helm Charts. The intention isn’t to call out Helm as being

insecure any more than any popular third party content repository is insecure. Rather, our intent is to start a conversation about better

ways of securing Helm Charts across the public charts repository so even more people can benefit from Helm’s ease of use. Likewise

the Helm project is similarly focused on analyzing and discussing the general security posture of Helm with their recent security audit

sponsored by the Cloud Native Computing Foundation.

Alongside this report we are also releasing a Helm plugin for Snyk so you can test your own Helm Charts for vulnerabilities.

We also look forward to working with the Helm community in the future by raising the visibility of vulnerabilities and ultimately

on helping to fix them.

- Gareth Rushgrove

Director of Product, Snyk

https://github.com/helm/community/blob/master/security-audit/HLM-01-report.pdf

TL;DR
Helm Chart

àà 277 stable Helm Charts

àà 68% of stable Helm Charts contain an image

with a high severity vulnerability

Images
àà 416 images used across stable Helm Charts

àà 6 images account for nearly half of all vulnerable paths,

the other 410 images account for the other half

àà 15% of stable charts utilize the Bats image (dduportal/

bats:0.4.0) which is the image with the most vulnerable

paths. This makes the image a potential vector for

attacking the ecosystem. Bats is a popular testing tool,

so coming up with an exploit to compromise valuable

data might be difficult.

Vulnerabilities
àà The most common types of vulnerabilities were out-of-

bounds reads or writes, access restriction bypass, and

NULL pointer dereference.

àà 40,047 vulnerabilities found when each vulnerability is

counted only once per image in which it appears

Remediation
àà 176 stable Helm Charts (64%) can benefit

from an image upgrade

àà There are 261 image upgrades that can be

made across the stable Helm Charts to

improve security.

Configuration
Configuration files set specific parameters and initial settings of

your application. The Kubernetes API is a powerful abstraction

for building cloud native systems. But an unintended

consequence of the rich API has been developers authoring large

amounts of configuration, mainly in YAML. These config files, if

they aren’t carefully written, can introduce security risk.

Helm
The package manager for Kubernetes. Helm helps you manage

Kubernetes applications. Helm is maintained by the Cloud Native

Computing Foundation (CNCF) in partnership with Microsoft,

Google, Bitnami, and the Helm contributor community.

Helm Chart
Charts are Helm packages and consist of a collection of files that

describe a related set of Kubernetes resources. Helm Charts

help you define, install, and upgrade even the most complex

Kubernetes application.

Image
A container image is an executable package of software that includes

everything needed to run an application. Charts can incorporate

a container image. The vulnerabilities discussed in this report are

present in the images.

Incubation
A category of Helm Chart for charts that are under development,

but do not yet meet the criteria of a stable chart. They can be shared,

collaborated upon, but have a different means of installation.

Kubernetes
Kubernetes is an open source project that is widely used to automate

deployment, scaling, and management of containerized applications.

Glossary

Stable
A category of Helm Chart for charts that are developmentally

mature. To be considered stable, a chart must meet the

requirements laid out in Helm Charts’ contribution guidelines.

The requirements include things like providing a secure default

configuration and only including images free of majority

security issues.

Vulnerability
A vulnerability, for the purpose of this report, describes a known

exploitable issue present in a container image.

Vulnerability types
These are general categories used to classify vulnerabilities

and describe similarities between vulnerabilities in the same

category. They roughly correspond to CWEs, Common Weakness

Enumeration, a community-developed list of common software

security weaknesses

Vulnerability Path
A specific vulnerability may be incorporated into a chart multiple

times. This is because operating system dependencies can be nested

and a single dependency can be introduced multiple times. We

account for the multiple vulnerability instances through a concept

we call “vulnerable paths”. One path is counted for every way a

specific vulnerability is introduced into the project. One path to

the vulnerability might be trivial to fix, while another is much more

difficult. Completing the trivial fix helps secure your system, but

while the other vulnerable paths are present, the vulnerability has

not been eradicated.

Glossary

All rights reserved. 2019 © Snyk 8

How was Helm Chart data gathered?

For a report of this nature, the first question many readers will have involves how the data was gathered. All stable

charts present in Helm Charts’ GitHub repository as of the week of October 21, 2019, were considered. They were

installed and tested against using a tool Snyk developed for this purpose, which can be found here. The results of this

test were collated and loaded into a database to be queried and inspected for patterns and relevant insights.

https://github.com/helm/charts/tree/master/stable
https://github.com/snyk-labs/helm-snyk

9All rights reserved. 2019 © Snyk

Helm Charts

Helm is a popular package manager for Kubernetes.

It streamlines the installation and management of

Kubernetes applications. Charts are Helm packages

and consist of a collection of files that describe a

related set of Kubernetes resources. Helm Charts

help you define, install, and upgrade even the most

complex Kubernetes application.

Helm is currently an incubating project with the

Cloud Native Computing Foundation (CNCF).

It is the widely adopted package manager for

Kubernetes. The following statistics will give us an

idea of the size and impact on the Helm community.

àà The Helm Chart repository currently

has 2,600 contributors and 10,700 stars

on GitHub.

àà The Helm website had 1,156,252 hits in the

month of October 2019.

àà Helm was downloaded more than 80,000

times in October 2019.

You can find and browse Helm Charts within the

GitHub repository found at www.github.com/helm/

charts. The charts found there, curated by Helm

maintainers, are separated into two groups, stable

and incubator.

Stable charts meet a set of requirements outlined

in the repository’s contributing guidelines.

These requirements include things like following

Kubernetes best practices and providing a secure

default configuration. Incubator projects have not yet

met one or more of the requirements.

This report will focus on the available stable Helm

Charts, their associated container images, and the

security vulnerabilities found in the container images.

Helm Chart landscape
Statistics are current as of October 24, 2019.

àà 277 stable Helm Charts, 233 (84%) of which

have an associated container image

àà 188 or 68% of stable Helm Charts contain an

image with a high severity vulnerability

àà 33,852 operating system package

dependencies across all the image instances

àà 40,047 vulnerabilities found

àà The average chart contains two images

àà All of the charts contain a total of 416 images

àà An average of 81 operating system package

dependencies per image

àà Current images have between 0 and 550

operating system package dependencies

per image

àà This corresponds to between 0 and 940

vulnerabilities per image

https://helm.sh/
http://www.github.com/helm/charts
http://www.github.com/helm/charts

10All rights reserved. 2019 © Snyk

Images
As described by Docker, a container image is a

lightweight, standalone, executable package of

software that includes everything needed to run an

application: code, runtime, system tools, system

libraries, and settings.

Images do not change (if a change is made, you now

have a new image). This immutability makes them

predictable and portable. One or more images may

be included as part of a Helm Chart. These images are

what Snyk uses to analyze the health of a Helm Chart.

The following images account for the largest share of

the vulnerabilities found in the stable Helm Charts.

Container images percentage share of
known vulnerabilities

0% 20%

Mariadb

Mysql

Tensor Flow
Model Server

Spark

Redmin

Redis

7%

10% 30%

Postgres

Docker-python3-
phantomjs-selenium

Superset

5%

4%

2%

2%

2%

1%

1%

1%

29%Bats

https://www.docker.com/resources/what-container

11All rights reserved. 2019 © Snyk

This graph is interesting for the following reasons.

1.	 There are a total of 416 images found in the

stable charts. With such a high number of

images, one might expect that even the image

responsible for the most vulnerabilities would

still have a minimal overall share. What we

actually see is that dduportal/bats:0.4.0

accounts for 29% of the vulnerable paths.

2.	 In addition to dduportal/bats:0.4.0 accounting

for the plurality of vulnerable paths, a small

handful of images can account for the

majority. In fact, the six images shown in the

chart below account for roughly the same

number of vulnerable paths as the remaining

410 images found in the stable charts.

These images are not necessarily less secure than the others that we find contributing vulnerable paths in

the stable charts. Instead these images are the ones that carry the heaviest vulnerability load across the

stable charts. Their share of vulnerabilities can be accounted for both by their wide adoption and because

the vulnerabilities found in these images often have a number of vulnerable paths.

Let’s take a closer look at the top three images.

Top 6 vulnerable images

5%

29%

4%

51%

2% 2%

7%

Other (410 images)

MySQL

Mariadb

Superset

Docker-python3-
phantomjs-selenium

PostgreSQL

Bats

https://hub.docker.com/r/dduportal/bats
https://hub.docker.com/r/dduportal/bats

12All rights reserved. 2019 © Snyk

dduportal/bats:0.4.0
Bats is a testing framework for Bash. It is reassuring

that the image responsible for the plurality of

vulnerable paths within the stable charts is a testing

framework. On Docker Hub you will find this image

described in the following way:

The idea is to use Docker's lightweight isolation to have

a self-contained image embedding bats, any dependency,

and all your tests.

This suggests that if someone were to compromise a

project through a known vulnerability in this image

that they might not be able to attack the high value

targets for which they are looking. Instead, they are

more likely to gain access to something less valuable,

like test data.

In total, 41 stable Helm Charts utilize this image. This

means that the vulnerabilities in this image impact

15% of stable Helm Charts.

The following table describes the 10 vulnerability types

most frequently seen with this image and the average

severity score that the given vulnerability type is likely

to introduce.

“

Common vulnerability types in Bats image

Vulnerability type Vulnerability paths in
stable charts

Average
severity

Out-of-Bounds 19024 7.2

Access Restriction Bypass 5371 7.1

NULL Pointer Dereference 4182 7.1

Improper Input Validation 3731 7.3

Resource Management Errors 2788 5.2

Information Exposure 2501 5.2

Cryptographic Issues 2255 7.0

Race Condition 2050 5.4

Integer Overflow or Wraparound 1927 8.9

Security Features 779 8.1

13All rights reserved. 2019 © Snyk

postgres:9.6.2
PostgreSQL (often referred to as postgres) is a popular

database management system. It is unsurprising

that it is commonly used in Helm Charts due to its

popularity. The following table describes the top 10

vulnerability types for the PostgreSQL image. Postgres

and Bats (discussed previously) are different tools that

solve different problems and a developer might not

necessarily expect for them to have much in common

with respect to the vulnerabilities that they introduce.

However, the top 4 vulnerability types match between

the two images and the remainder of the top 10 are

close, though not matching precisely.

This image is used by 7 Helm Charts, or approximately

2.5% of the stable Helm Charts.

Common vulnerability types in Postgres image

Vulnerability type Vulnerability paths in
stable charts

Average
severity

Out-of-Bounds 4718 8.1

Access Restriction Bypass 994 6.9

NULL Pointer Dereference 889 7.1

Improper Input Validation 749 6.9

Race Condition 581 5.6

Resource Management Errors 581 5.4

Cryptographic Issues 406 5.3

Information Exposure 287 5.4

Integer Overflow or Wraparound 273 9.0

Directory Traversal 252 8.1

14All rights reserved. 2019 © Snyk

unguiculus/docker-python3-
phantomjs-selenium:v1
The image that contributes the third most vulnerable

paths is called Docker-python3-phantomjs-selenium.

This image adds phantom js and selenium. The top 10

vulnerability types for this image are listed in the

table to the right.

This image is interesting for a few reasons.

Both PhantomJS and Selenium deal with web browser

automation. They can both be used for testing —

meaning this image can be thought of as similar to

Bats. It isn’t great that it is introducing vulnerabilities,

but the vulnerabilities might be deemed acceptable

because they are unlikely to expose high value targets.

Another interesting thing to consider is that

PhantomJS has been archived and is no longer under

active development as of March 2018. If you are using

this image in your Kubernetes project, it probably

makes sense to move to a new tool.

Finally, we should consider how many charts are

utilizing this image. Currently only a single stable

Helm chart (keycloak@4.10.1) uses this image.

This final point gives us a reality check with respect

to these vulnerabilities. These vulnerabilities deeply

impact a single chart, but are not widely felt across

the stable charts.

Now that we have taken a quick look at the images

that account for the most vulnerable paths, it is

helpful to consider the vulnerabilities themselves.

Common vulnerability types in docker-python3-phantomjs-
selenium image

Vulnerability type Vulnerability paths in
stable charts Average severity

Out-of-Bounds 2846 7.3

Resource Management Errors 1597 7.0

NULL Pointer Dereference 631 7.7

Resource Exhaustion 491 7.3

Improper Input Validation 455 7.1

Allocation of Resources Without Limits or Throttling 240 7.2

Missing Release of Resource after Effective Lifetime 195 4.9

Integer Overflow or Wraparound 189 8.1

Information Exposure 149 6.2

Access Restriction Bypass 139 6.5

15All rights reserved. 2019 © Snyk

Vulnerabilities
This table shows us which vulnerabilities are seen

repeatedly in the stable charts. You will find the

vulnerability type, the percentage share, a link to the

vulnerability in the Snyk database, the CVSS score, and

the severity rating.

Six of the top 10 vulnerabilities are medium severity.

This is nice to see because many organizations will

find that a medium severity vulnerability is a tolerable

risk, at least initially. This means that these common

vulnerabilities can potentially be a lower priority to fix,

freeing resources to fix more pernicious issues.

If you want to know more about these individual

vulnerabilities, please be sure to click through the link

which will take you to the entry in Snyk’s database.

Most commonly occuring vulnerabilities in stable Helm Charts

Vulnerability Count CVSS Severity

Access Restriction Bypass 4039 7.8  high

Resource Management Errors 2628 4.3  medium

Out-of-bounds Read 2234 4.4  medium

Out-of-bounds Read 2234 6.3  medium

NULL Pointer Dereference 2131 7.5  high

NULL Pointer Dereference 2131 5.5  medium

Out-of-Bounds 1964 4.0  medium

Access Restriction Bypass 1964 9.8  high

Race Condition 1964 4.7  medium

Credentials Management 1813 9.8  high

https://snyk.io/vuln/SNYK-LINUX-UTILLINUX-129007
https://snyk.io/vuln/SNYK-LINUX-UTILLINUX-130950
https://snyk.io/vuln/SNYK-LINUX-NCURSES-135410
https://snyk.io/vuln/SNYK-LINUX-UTILLINUX-149981

16All rights reserved. 2019 © Snyk

Severities
Now that we have taken a closer look at the more

common vulnerabilities, it would be good to

understand them from a global scale. The following

chart shows the proportion of the vulnerabilities rated

as high severity, medium severity, and low severity.

Unfortunately, high severity vulnerabilities are the

most common across the Helm Charts. However,

more than half the vulnerabilities in the ecosystem

are either medium or low severity. Risk tolerance will

vary across teams and projects, but in general, if you

are using a helm chart you can expect to see a high

severity vulnerability. 68% of the 277 stable Helm

Charts include a high severity vulnerability.

All of the charts considered in this report are “stable”

meaning that they have met specific criteria for

inclusion. One criteria that must be met is that the

images used “should not have any major security

vulnerabilities”. This is outlined in the Helm Charts’

contribution guidelines.

Vulnerability severity ratings

46%

48%

6%

 Low

Medium

High

17All rights reserved. 2019 © Snyk

This criteria may be more aspirational than practical

for the following reasons:

1.	 “Major security vulnerabilities” is not defined.

Does a known vulnerability with a high cvss

score meet that standard? If not, what would

meet the standard?

2.	 This requirement is outlined in the contribution

guidelines. This generally suggests that “major

security vulnerabilities” are not acceptable at

time of contribution—however the security

health of an image is not static. An image

free of known vulnerabilities one day may be

compromised the next day. But no one from the

chart maintainer to a chart user may know that

the security status has changed.

It isn’t reasonable to expect an image to contain no

known vulnerabilities. However, it is incongruent

to represent these charts as stable, with no major

security vulnerabilities when 68% of the stable charts

use an image with a high severity vulnerability.

A Helm Chart is a powerful tool, but it is in the

user’s interest to know what vulnerabilities they are

introducing into their project through the use of a

given chart. It is likely that the risk is well within the

user’s tolerance, but it is better for a user to know

about the risks rather than making an assumption

about the security of a chart just because it is

classified as “stable”.

18All rights reserved. 2019 © Snyk

Types
In addition to the severity of the vulnerable paths, it is

important to consider the different vulnerability types

present in the stable helm charts.

The graph to the right shows the share different

types of vulnerabilities account for across the stable

Helm Chart.

There were 185,999 vulnerable paths across the stable

Helm Charts and dozens of reported vulnerability

types. However, three vulnerability types make up

almost half of the total vulnerable paths: out-of-

bounds vulnerabilities, access restriction bypasses,

and NULL pointer dereferences. Each of these are

discussed below.

Vulnerability types

9%

30%

4%

7%

35%

7% 8%

Other

Cryptographic Issues

Improper Input Validation

Resource Management
Errors

NULL Pointer Dereference

Access Restriction Bypass

Out-of-Bounds

19All rights reserved. 2019 © Snyk

Out-of-bounds read

For an out-of-bounds read vulnerability, concerns

either center around the exposure of sensitive data

or an improper read crashing the system. This type

of problem can be combated by careful handling of

input data. This may include a “whitelist” system, only

accepting input that can match to the list. Any input

that does not match to the whitelist is not displayed.

This approach is likely to work better than a “blacklist”

because it is easier and more predictable to define

acceptable data than it is to define all conceivable

types of unacceptable data.

Out-of-bounds write

Concerns associated with an out-of-bounds write

include data corruption, a crash, or code execution.

The first two concerns are also problems for out-

of-bounds read vulnerabilities and are discussed

above. The possibility of malicious code execution

makes the out-of-bounds write vulnerabilitiy the

more severe of the two.

This kind of vulnerability can be managed by

checking your buffer size to make sure that you

don’t have anything unexpected. Additionally, you

can make sure that the destination buffer size is

equal to the source buffer size, or truncate input

strings after a reasonable length before passing to

other functions.

Out-of-bounds

Out-bounds vulnerabilities come in two types — read and write. Both vulnerability types involve accessing data

outside of the intended buffer. Out-of-bounds read vulnerabilities can only read information that is already

there. It is a problem because that is data that the developer may not want to surface. An out-of-bounds write

vulnerability can write data outside of the intended buffer, which can produce undefined or unexpected results.

20All rights reserved. 2019 © Snyk

Access restriction bypass

Access restriction bypass vulnerabilities are the second

most common type of vulnerability found in the

images used by stable Helm Charts.

An access restriction bypass can occur a number of

different ways. First, the system may not correctly

check the identity of a user. Someone other than an

account-holder will be able to access their data or

their privileges.

Another type of access restriction bypass involves a

user being able to perform an action in the system

that they should not be able to. This kind of behavior

can happen when privileges are either inappropriately

assigned or insufficiently checked. This can expose

sensitive data or lead to unexpected behavior.

Finally, accountability may be bypassed. If a system

needs to track a user’s actions, but a user is able

to bypass that, the user could perform malicious

operations and fly under the radar.

Developers can approach these problems on two

fronts: specification and enforcement. Specification

involves being thoughtful and deliberate about how

permissions are assigned. Where these problems are

known to exist within a system that you are using, you

should consider supplementing them with your own

logic and checks.

Enforcement problems occur when the program fails

to adhere to the guidelines that an administrator sets.

If there is a known enforcement problem, it would be

wise to write and run tests to ensure that your highly

sensitive data and functionality are protected.

NULL pointer dereference

A NULL pointer dereference occurs when a pointer

with value NULL is treated as though it pointed to

a valid memory area. A NULL pointer dereference

results in a software failure. This problem can

result in an exploitation if an attacker uses the

stack trace to gain information about the software

to plan an attack or if the exception allows a bypass

of security checks.

All NULL pointer dereferences are unwelcome

in a system, because they cause a process to

fail. Whether the failure can be leveraged by an

attacker is another question. Some proportion of

them will be susceptible, but not all of them. When

we consider the share of vulnerability paths made

up of NULL pointer dereferences, it is heartening

because only a small share of those paths are likely

to be a problem from a security standpoint. We

should avoid this issue if at all possible for the sake

of reliability more so than security.

21All rights reserved. 2019 © Snyk

Remediation
As important as it is to understand the known

vulnerabilities in stable Helm Charts, it is only an academic

exercise unless we also talk about remediation. With

respect to remediation, there is both good and bad news.

Let’s discuss the bad news first. Currently none of the

vulnerable images used in the stable Helm Charts have an

available patch. Additionally, only 16% of vulnerabilities

can be remediated through an image upgrade.

However, there is good news.

àà 176 stable Helm Charts (64%) can benefit

from an image upgrade. Not every vulnerability

can be fixed, but the overall security health

of these charts can be improved with an upgrade

or upgrades.

àà There are 261 image upgrades that can be made

across the stable Helm Charts to improve security.

There is still a lot to do with respect to improving security

across stable Helm Charts, but it is heartening to know

that there are actionable items as of this writing.

22All rights reserved. 2019 © Snyk

Helm security

Just as Helm Charts are divided into incubating and

stable, CNCF projects are divided into incubating

and graduated. Graduated projects have met

standards and are sufficiently mature for wide

adoption. As of the writing of this report, Helm

is currently classified as an incubating project

and version 3.0 was released on November 13,

2019. Helm is seeking to move from incubation to

graduation soon. One of the graduation criteria is

to undergo a third party security audit, which Helm

3.0 has now successfully completed. The results of

their audit are now publicly available and can be

accessed through the Helm community’s GitHub

repository. Though one vulnerability was found and

remediated, the report was very encouraging both

with respect to Helm’s general security posture

and to the manual code audit that was performed.

Congratulations to the Helm community for

completing this important step towards graduation.

This report helps security minded people adopt

Helm with confidence.

Another important aspect to consider when using

a Helm Chart is your project configurations. The

Kubernetes API is a powerful abstraction for building

cloud native systems. But an unintended consequence

of the rich API has been developers authoring by hand

large amounts of configuration, mainly in YAML. This

can be a security concern. Fortunately, there are a few

things you can do to help your project stay secure and

Helm has done a good job documenting these steps.

The default installation of a widely used version of

Helm (2.14.3) applies no security configurations. This

means that unless you are working against a cluster

with no or very few security concerns, you need to

invest some effort into thinking about the correct

security configuration for your project. We suggest

following the best practices outlined in the Helm

documentation. If you are using the newly released

version 3.0, we also recommend making use of the

Helm provenance tools to verify the integrity and

origin of a package.

We also recommend the use of conftest or

similar tools to write configuration tests, so you

can be confident in the configuration files that

are in production.

https://github.com/cncf/toc/blob/master/process/graduation_criteria.adoc#graduation-stage
https://github.com/helm/community/blob/master/security-audit/HLM-01-report.pdf
https://github.com/helm/community/blob/master/security-audit/HLM-01-report.pdf
https://helm.sh/blog/2019-10-30-helm-symlink-security-notice/
https://helm.sh/docs/using_helm/#securing-your-helm-installation
https://helm.sh/docs/using_helm/#best-practices-for-securing-helm-and-tiller
https://v3.helm.sh/docs/topics/provenance/
https://github.com/instrumenta/conftest

All rights reserved. 2019 © Snyk 23

Conclusion

Thank you for reading our report on Helm Chart security. We hope that it was an interesting look at the security

implications of a popular and growing project. If you are curious about the vulnerabilities in the charts you are

using, we encourage you to try our new plugin. We believe that Helm has a promising future and we are excited to

help people use it securely.

https://github.com/snyk-labs/helm-snyk

London

1 Mark Square

London EC2A 4EG

Office info

 Tel Aviv

40 Yavne st., first floor

Boston

WeWork 9th Floor

501 Boylston St

Boston, MA 02116

Twitter: @snyksec

Web: https://snyk.io

Report author

Hayley Denbraver (@hayleydenb)

Report contributors

Sarah Conway (@sarahkconway)

Jeff McLean

Gareth Rushgrove (@garethr)

Report design

Growth Labs (@GrowthLabsMKTG)

Use open source. Stay secure.

http://twitter.com/snyksec
https://snyk.io
https://twitter.com/hayleydenb
https://twitter.com/sarahkconway
https://twitter.com/garethr
https://twitter.com/GrowthLabsMKTG

